Answer
given,
focal length of lens A = 5.77 cm
focal length of lens B= 27.9 cm
flies distance from mirror = 11.3 m
now,
Using lens formula
q =11.79 cm
image of lens A is object of lens B
distance of lens = 59.9 - 11.79 = 48.11
now, Again applying lens formula
q' =66.41 cm
hence, the image distance from the second lens is equal to q' =66.41 cm
Assuming this coin is on earth and that it wasn’t dropped forcefully:
Use the formula d = 1/2at^2. Rewriting using a=g and solving for height h gets us h = 1/2(9.8)t^2.
In this case that would get that the change in height h is 0.5(9.8)(0.3^2) = 0.441 m.
Answer:
a planet the is human habitable or just plain out earth
Explanation:
Do you have a picture of the diagram that I could view?
Total distance covered is 47.1 m whereas displacement is zero.
<h3>Calculation:</h3>
Given,
Diameter, d = 5 m
No. of revolutions = 3
Radius, r = 5/2 = 2.5 m
To find,
Distance =?
Displacement =?
Distance covered in one revolution = 2πr
Put the values in this,
Distance = 2 × 3.14 × 2.5
= 15.7 m
Total distance covered in 3 revolution = 3 × 31.4
= 47.1 m
Displacement is the change in the position of the object or the distance between the initial and final position.
After 3 revolutions the particle comes back to its initial position. Therefore, the displacement is zero.
Hence, the total distance covered in 3 resolutions is 47.1 m whereas displacement is zero.
Learn more about distance and displacement here:
brainly.com/question/3243551
#SPJ4