Answer:
E = h f = h c / λ energy of single photon
n E = 4.00E-11 W/m^2 energy required for visibility
n h c / λ = 4.00E-11 number of photons required for visibility (per square meter)
n = 4.00E-11 * 5.00E-7 / (6.63E-34 * 3.00E8)
n = 20.0E-18 / 19.9 E-26 = 1.00E8
100 million photons would be required on 1 m^2 to create visibility
a / A = π * (3.6E-3)^2 / 1 = 4.07E-5 fraction of area available
4.07E-5 * 1.00E8 = 4.07E3 photons required
Answer:
0.37 m/s to the left
Explanation:
Momentum is conserved. Initial momentum = final momentum.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
Initially, both the fisherman/boat and the package are at rest.
0 = m₁ v₁ + m₂ v₂
Plugging in values and solving:
0 = (82 kg + 112 kg) v + (15 kg) (4.8 m/s)
v = -0.37 m/s
The boat's velocity is 0.37 m/s to the left.
The answer is:
It can be disruptive to the whole banking system.
The mass of an object divided by its volume