Answer:
(2, -5)
Step-by-step explanation:
Convert to vertex form:
3x^2 - 12x + 7
= 3(x^2 - 4x) + 7
Completing the square:
= 3[ (x - 2)^2 - 4)] + 7
= 3(x - 2)^2 - 12 + 7
= 3(x - 2)^2 - 5.
Comparing with the general form
a(x - b)^2 + c we see that the vertex is (b, c) = (2, -5).
Answer:
45 ways
Step-by-step explanation:
We are given;
there are 3 different math courses, 3 different science courses, and 5 different history courses.
Thus;
Number ways to take math course = 3
The number of ways to take science course = 3
The number of ways to take history course = 5
Now, if a student must take one of each course, the different ways it can be done is;
possible ways = 3 x 3 x 5 = 45 ways.
Thus, number of different ways in which a student must take one of each subject is 45 ways.
7 because you have to round 6 to 7 from the former seven and seven is bigger than 4 so the 6 would become a
7
Since J is the midpoint of HK, that means HK is split into two sections HJ and JK that are the same length.
1) You are told that the m<span>easure of segment HJ = 9x-2 and that of segment JK = 4x+13. Since you also know they are equal lengths, you can set these equations equal to each other to find the value of x!
HJ = JK
</span>9x-2 = 4x+13
5x = 15
x = 3
2) Now you know x = 3. Plug that into your given equations for HJ and JK to find the length of each segment (or a shortcut would be to find one of them, and then you also know the other is the same length. I'm doing both, just to make sure I don't make a silly mistake!):
HJ = <span>9x-2
</span>HJ = 9(3) - 2
HJ = 27 - 2
HJ = 25
JK = 4x + 13
JK = 4(3) + 13
JK = 12 + 13
JK = 25
3) Finally, the length of HK is just the length of HJ + JK, or HK = 25 + 25 = 50.
-----
Answer: HJ = 25, JK = 25, HK = 50