She had none left. if she only had a meter and then used a meter there would be none left.
Total paintings = 6
Number of different places for each painting = 6
Total number of ways she could hang all the painting = 6 × 6 = 36
The question is defective, or at least is trying to lead you down the primrose path.
The function is linear, so the rate of change is the same no matter what interval (section) of it you're looking at.
The "rate of change" is just the slope of the function in the section. That's
(change in f(x) ) / (change in 'x') between the ends of the section.
In Section A:Length of the section = (1 - 0) = 1f(1) = 5f(0) = 0change in the value of the function = (5 - 0) = 5Rate of change = (change in the value of the function) / (size of the section) = 5/1 = 5
In Section B:Length of the section = (3 - 2) = 1 f(3) = 15f(2) = 10change in the value of the function = (15 - 10) = 5Rate of change = (change in the value of the function) / (size of the section) = 5/1 = 5
Part A:The average rate of change of each section is 5.
Part B:The average rate of change of Section B is equal to the average rate of change of Section A.
Explanation:The average rates of change in every section are equalbecause the function is linear, its graph is a straight line,and the rate of change is just the slope of the graph.
66 Diners promised to participate
1,013 is what each restaurant would donate
947 + x = 683 + 5x
-683 -683
264 + x = 5x
- x -x
264 = 4x
Divide 264 by 4 = 66