Answer:
y = 67.6 feet, y = 114.4/ (22 - 3t)
Explanation:
For this exercise let's use that light travels in a straight line and some trigonometric relationships, the symbols are in the attached diagram
Large triangle Projector up to the screen
tan θ = y / L
For the small triangle. Projector up to the person
tan θ = y₀ / (L-d)
The angle is the same, so we equate the two equations
y₀ / (L -d) = y / L
y = y₀ L / (L-d)
The distance from the screen (d), we look for it with kinematics
v = d / t
d = v t
we replace
y = y₀ L / (L - v t)
y = 5.2 22 / (22 - 3 t)
y = 114.4 (22 - 3t)⁻¹
This is the equation of the shadow height change as a function of time
For the suggested distance the shadow has a height of
y = 114.4 / (22-13)
y = 67.6 feet
Answer:
1.4 billion light years away
Explanation:
v = Recessional velocity = 30000 km/s[/tex]
= Hubble constant = 
D = Distance to the galaxy
According to Hubble's law

The galaxy is 1.4 billion light years away
The acceleration is 3.3 m/s2
Answer:
1 x 10 -10 whisper at 1m distance.
Explanation:
- Properly fitted ear plugs an reduce noise form 15-30db. Although they are better for low frequency