1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
4 years ago
15

Imagine you have just witnessed a small avalanche on a mountain while skiing, and two slushy snowballs just crashed together in

a perfectly inelastic collision. They are moving as one larger snowball, as a combined mass. Before the collision, snowball A was 7 kg and had initial momentum of –14 kg · m/s; therefore, its velocity must have been ? m/s
Snowball B had initial momentum of 15 kg ∙ m/s, and a velocity of 5 m/s; therefore, its mass must have been ? kg.

Recognizing that momentum is conserved in inelastic collisions, the total momentum of the combined snowballs after the collision must be ? kg · m/s.
Physics
2 answers:
Black_prince [1.1K]4 years ago
8 0
The first is -2.

the second is 3. 

the third is 1. 
inn [45]4 years ago
6 0
We have that the momentum p is given by the formula p=mv where m is the mass and v is the velocity. Since for A p=-14kgm/s and m=7, we have that the velocity is -14/7=-2m/s. Hence its speed is 2 m/s.
For b we have that p=15kgm/s and v=3m/s. Because m=p/v, we have m=3kg.
We also have that the momentum is conserved in this system. Hence, the net sum of the momentum of the 2 snowballs equals the momentum of the single giant ball. Hence, p(total)=p(combined)=-14+15=1kgm/s (momentum is a vector; the positive sign means that it tends to the positive direction).

You might be interested in
Question 2 The gravitational force between two objects with identical masses that are 10 m apart, is 2.67 x10-10 N. To the neare
xxMikexx [17]

Answer  888990,0 kg

Explanation:

3 0
3 years ago
The aqueduct passes under Johnson Road in Lancaster through a siphon. The maximum capacity of the aqueduct is 350 m3/s. The heig
Mariulka [41]

Answer:

D ≈ 8.45 m

L ≈ 100.02 m

Explanation:

Given

Q = 350 m³/s (volumetric water flow rate passing through the stretch of channel, maximum capacity of the aqueduct)

y₁ - y₂ = h = 2.00 m (the height difference from the upper to the lower channels)

x = 100.00 m (distance between the upper and the lower channels)

We assume that:

  • the upper and the lower channels are at the same pressure (the atmospheric pressure).
  • the velocity of water in the upper channel is zero (v₁ = 0 m/s).
  • y₁ = 2.00 m  (height of the upper channel)
  • y₂ = 0.00 m  (height of the lower channel)
  • g = 9.81 m/s²
  • ρ = 1000 Kg/m³ (density of water)

We apply Bernoulli's equation as follows between the point 1 (the upper channel) and the point 2 (the lower channel):

P₁ + (ρ*v₁²/2) + ρ*g*y₁ = P₂ + (ρ*v₂²/2) + ρ*g*y₂

Plugging the known values into the equation and simplifying we get

Patm + (1000 Kg/m³*(0 m/s)²/2) + (1000 Kg/m³)*(9.81 m/s²)*(2 m) = Patm + (1000 Kg/m³*v₂²/2) + (1000 Kg/m³)*(9.81 m/s²)*(0 m)

⇒ v₂ = 6.264 m/s

then we apply the formula

Q = v*A  ⇒   A = Q/v ⇒   A = Q/v₂

⇒   A = (350 m³/s)/(6.264 m/s)

⇒   A = 55.873 m²

then, we get the diameter of the pipe as follows

A = π*D²/4   ⇒   D = 2*√(A/π)

⇒   D = 2*√(55.873 m²/π)

⇒   D = 8.434 m ≈ 8.45 m

Now, the length of the pipe can be obtained as follows

L² = x² + h²

⇒ L² = (100.00 m)² + (2.00 m)²

⇒ L ≈ 100.02 m

6 0
3 years ago
Read 2 more answers
Nuclear sizes are expressed in a unit named
o-na [289]

Answer:

Answer is A) Fermi

Explanation:

Fermi is the expressive unit for nuclear sizes. Fermi = 10^-15 meter.

4 0
3 years ago
Why does a black hole have a stronger gravitational pull than the star that collapse to form it?​
Studentka2010 [4]

Answer:

We consider Black Holes as an object that possesses extreme gravitational pull, but wait aren’t they have the same mass(or less) as that of their parent star. And we know that gravitational pull ‘F’ is directly proportional to the mass of an object, so if the mass is same(or less) then why do black holes have stronger gravity than the stars they evolved from.

The above consideration that F is directly proportional to the mass is partially correct, one should also mention that F is also inversely proportional to the square of the distance between the considered objects.

F = G*(M*m)/(r^2)

Where:

· F is the force acting on you due to star

· M is the mass of Parent star / Black Hole

· m is the mass of an observer, here it is you

· r is the radial distance between the star and you

We know that black hole formed, has much smaller size than that of its parent star and all that mass is compressed to a much smaller scale. If you consider a Star as having a size of an earth then the black hole formed will have a size of small city.

Let us say that you are standing at an r distance away from a star (r>R1), where R1 is the radius of the star, of course (R1>R2), where R2 is the radius of Black Hole.

The Force by which the star in case 1 attracts you will be equal(or less) to the force by which black hole in case 2. So, there is nothing increase in gravitational pull, it is same(or less) as that of the parent star.

Wait a minute, then why people say that black holes have massive gravitational pull.

The gravitational pull increases as we move closer to the black hole, and when we are at its surface, it is enormous as compare to its star surface, because of the difference in the size.

We know that gravitational pull not only depends upon the mass but also depends upon the radial distance between the concerned objects here, it is you and the black hole.

Here, the size of the black hole is much smaller than that of its parent star, i.e (R1>>>R2), and thus we get F1<<<F2, and that is why we say that the black hole has enormous gravitational pull, such that nothing can escape, not even light.

8 0
3 years ago
A woman with a mass of 60 kg climbs a set of stairs that are 3m high How much gravitational potential energy does she gain a res
Bess [88]

540 j

hope it helpssssssssssss

4 0
2 years ago
Other questions:
  • What is the net force on this object?
    8·2 answers
  • A basketball star exerts a force of 3225 n (average value) upon the gym floor in order to accelerate his 76.5-kg body upward. de
    10·1 answer
  • A wave x meters long has a speed of y meters per second. The frequency of the wave is
    7·1 answer
  • (a) What is the angular speed ω about the polar axis of a point on Earth's surface at a latitude of 55° N? (Earth rotates about
    12·1 answer
  • Question 9(Multiple Choice Worth 2 points)
    11·1 answer
  • A ray diagram for a refracted light ray is shown.
    8·1 answer
  • What is the relation of pressure of a liquid with its depth and density?​
    11·1 answer
  • The scientific unit used to measure distance is the?
    14·1 answer
  • What does water’s high specific heat capacity explain about water?(1 point)
    7·1 answer
  • Identify two main ideas about the normal force.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!