Answer:
1. They debated about many things.
2. Greek philosophers debated about things. They did not have a scientific/experiment based approach to studying nature. They did not have tools.
3. Democritus
4. Democritus had the basic idea of atoms, even though he had no experimental evidence to support his thinking.
5. taught that there were substances called atoms and that these atoms made up all material things. The atoms were unchangeable, indestructible, and always existed.
Explanation:
hope this helps
the force between the electron and the proton.
a) Use F = k * q1 * q2 / d²
where k = 8.99e9 N·m²/C²
and q1 = -1.602e-19 C (electron)
and q2 = 1.602e-19 C (proton)
and d = distance between point charges = 0.53e-10 m
The negative result indicates "attraction".
the radial acceleration of the electron.
b) Here, just use F = ma
where F was found above, and
m = mass of electron = 9.11e-31kg, if memory serves
a = radial acceleration
the speed of the electron.
c) Now use a = v² / r
where a was found above
and r was given
<span> the period of the circular motion.</span>
d) period T = 2π / ω = 2πr / v
where v was found above
and r was given
Answer:
76.56g
Explanation:
Firstly, to do this we need a correct and balanced equation for the decomposition of potassium chlorate.
2KClO3 —-> 2KCl + 3O2
From the balanced equation, we can see that 2 moles of potassium chlorate yielded 3 moles of oxygen gas
We need to know the actual number of moles of oxygen gas produced. To do this, we divide the mass of the oxygen gas by its molar mass. Its molar mass is 32g/mol
The number of moles is thus 30/32 = 0.9375 moles
Now we can calculate the number of moles of potassium chlorate decomposed.
We simply do this by (0.9375 * 2)/3 = 0.625 moles
Now to get the number of grammes of potassium chlorate decomposed, we simply multiply this number of moles by the molecular mass. The molecular mass of KClO3 is 39 + 35.5 + 3(16) = 122.5g/mol
The amount in grammes is thus 122.5 * 0.625 = 76.56g
Answer:
If you help I'll help you deal?