That's the impression you get from the sound, that you call 'high' or 'low', determined by the FREQUENCY of the wave.
Answer:
Approximately
.
Explanation:
<h3>Solve this question with a speed-time plot</h3>
The skateboarder started with an initial speed of
and came to a stop when her speed became
. How much time would that take if her acceleration is
?
.
Refer to the speed-time graph in the diagram attached. This diagram shows the velocity-time plot of this skateboarder between the time she reached the incline and the time when she came to a stop. This plot, along with the vertical speed axis and the horizontal time axis, form a triangle. The area of this triangle should be equal to the distance that the skateboarder travelled while she was moving up this incline until she came to a stop. For this particular question, that area is approximately equal to:
.
In other words, the skateboarder travelled
up the slope until she came to a stop.
<h3>Solve this question with an SUVAT equation</h3>
A more general equation for this kind of motion is:
,
where:
and
are the initial and final velocity of the object,
is the constant acceleration that changed the velocity of this object from
to
, and
is the distance that this object travelled while its velocity changed from
to
.
For the skateboarder in this question:
.
To solve the problem it is necessary to apply the concepts related to the voltage in a coil, through the percentage relationship that exists between the voltage and the number of turns it has.
So things our data are given by



PART A) Since it is a system in equilibrium the relationship between the two transformers would be given by

So the voltage for transformer 2 would be given by,

PART B) To express the number value we proceed to replace with the previously given values, that is to say



Hey, Sissy05pooh!
The more domains that are aligned in a magnet it is stronger, and the magnetic field is larger.