Answer:
A) Impulse is the same for both the objects
B) The higher is the speed, the greater will be the height.
Explanation:
Part a)
The time of interaction of the two bodies i.e the hanging mass and the stick is same. Thus, force caused by dart on the block = force caused by block on the dart. Hence, impulse is the same for both the objects.
Part B
The energy will be conserved in the entire reaction process
Hence, Kinetic energy = potential energy
0.5Mv^2 = gh(md+mb)
H is directly proportional to the square of speed.
Hence, the higher is the speed, the greater will be the height.
Reflecting telescope. Reflecting telescopes tend to have larger objective (due to the use of mirrors, mirrors are a lot cheaper than lenses) and have the ability to collect more light, while refracting telescopes are limited to objective lenses with smaller diameters due to their structural limitations (chromatic abbreviation, for example). Therefore, reflecting telescopes should be better at viewing faint distant stars
Answer:
angle minimum θ = 41.3º
Explanation:
For this exercise let's use Newton's second law in the condition of static equilibrium
N - W = 0
N = W
The rotational equilibrium condition, where we place the axis of rotation on the wall
We assume that counterclockwise rotations are positive
fr (l sin θ) - N (l cos θ) + W (l/2 cos θ) = 0
the friction force formula is
fr = μ N
fr = μ W
we substitute
μ m g l sin θ - m g l cos θ + mg l /2 cos θ = 0
μ sin θ - cos θ + ½ cos θ= 0
μ sin θ - ½ cos θ = 0
sin θ / cos θ = 1/2 μ
tan θ = 1/2 μ
θ = tan⁻¹ (1 / 2μ)
θ = tan⁻¹ (1 (2 0.57))
θ = 41.3º
Answer:
111,000 Pa
Explanation:
P = Patm + ρgh
122,000 Pa = Patm + (921 kg/m³) (9.8 m/s²) (1.22 m)
Patm = 111,000 Pa
Answer:
Every individual part of a cell has a very important and specific purpose. If even one of these went wrong it would throw off the other parts and most likely damage the cell. They all work in a bit of unison, so it's very important nothing bad happens to one. Hope this helps you out! :)