Answer:

Explanation:
Given that,
The position of a particle is given by :

Let us assume we need to find its velocity.
We know that,

So, the velocity of the particle is
.
Answer:
"Longitudinal wave" is the appropriate answer.
Explanation:
- Generating waves whenever the form of communication being displaced in a similar direction as well as in the reverse way of the wave's designated points, could be determined as Longitudinal waves.
- A wave running the length of something like a Slinky stuffed animal, which expands as well as reduces the spacing across spindles, produces a fine image or graphic.
Answer:
The time taken is 
Explanation:
From the question we are told that
The speed of first car is 
The speed of second car is 
The initial distance of separation is 
The distance covered by first car is mathematically represented as

Here
is the initial distance which is 0 m/s
and
is the final distance covered which is evaluated as
So


The distance covered by second car is mathematically represented as

Here
is the initial distance which is 119 m
and
is the final distance covered which is evaluated as

Given that the two car are now in the same position we have that


Answer:
388.97 nm
Explanation:
The computation of the wavelength of this light in benzene is shown below:
As we know that
n (water) = 1.333
n (benzene) = 1.501

And, the wavelength of water is 438 nm
![\lambda (benzene) = \lambda (water) [\frac{n(water)}{n(benzene}]](https://tex.z-dn.net/?f=%5Clambda%20%28benzene%29%20%3D%20%5Clambda%20%28water%29%20%5B%5Cfrac%7Bn%28water%29%7D%7Bn%28benzene%7D%5D)
Now placing these values to the above formula
So,

= 388.97 nm
We simply applied the above formula so that we can easily determine the wavelength of this light in benzene could come
Answer:
d. It increases numerical aperture and maintains a uniform light speed.
Explanation:
In optical microscopes, various immersion mediums are used to improve or enhance the resolution. Immersion oils like cedar and Leica oils are one of those mediums which are used to improve resolution by increasing the numerical aperture and keeping the speed of light uniform.