Opposite force in the opposite.
Answer: A
Out of the screen
Explanation:
Using right hand rule, the magnetic force is perpendicular to the plane form by the magnetic field of a charged particle and its speed. Which will be into the screen.
But the negative charged particle moves in the opposite direction of the positive charged particle. Therefore, the magnetic force direction will be out of the screen
Answer:
The right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Explanation:
Thickness of the wall is L= 20cm = 0.2m
Thermal conductivity of the wall is K = 2.79 W/m·K
Temperature at the left side surface is T₁ = 50°C
Temperature of the air is T = 22°C
Convection heat transfer coefficient is h = 15 W/m2·K
Heat conduction process through wall is equal to the heat convection process so

Expression for the heat conduction process is

Expression for the heat convection process is

Substitute the expressions of conduction and convection in equation above


Substitute the values in above equation

Now heat flux through the wall can be calculated as

Thus, the right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²
Answer:
a) 200A
b) 10.2V
c) 2.04kW
d)
I=80A
V=4.08V
P=0.326kW
Explanation:
Here we have a circuit of one power source and two resistors in series, the first question is asking for the current, so according to Ohm's Law:

Where R is the equivalent resistance of the resistors in series
![R=0.0510+0.0090=0.0600[ohm]](https://tex.z-dn.net/?f=R%3D0.0510%2B0.0090%3D0.0600%5Bohm%5D)

To calculate the voltage dropped by the motor we have to apply the voltage divider rule:

The power dissipated supplied to the motor is given by:

now solving adding a 0.0900 ohm resistor:


