There is no image!?...was there meant to be something attached?
Answer:
b. They orbit around the Sun in a counterclockwise direction, when viewed from above the ecliptic plane.
Explanation:
All the objects of the solar system revolve around the Sun in a counterclockwise direction. The comet coming from the Oort's cloud will also follow the same kind of orbit. That is why it can't be a property to distinguish an Oort's cloud comet.
All other properties are correct to identify an Oort's cloud comet as the Oort's cloud is a considered a spherical cloud just outside the Solar system.
The density is 4.76 gcm^-3
and if mass is in kg then density is equal to 4.76*10^-3
This question is incomplete, the complete question is;
Now we will examine the electric field of a dipole. The magnitude and direction of the electric field depends on the distance and the direction. We will investigate in detail just two directions. With charges available in the simulation (all the charges are either positive or negative 1 nC increments).
how do you create a dipole with dipole moment 1 x 10-9 Cm with a direction for the dipole moment pointing to the right. Make a table below that shows the amounts of charge and the distance between the charges. There are many correct answers
Answer:
Given the data in question;
Dipole moment P = 1 × 10⁻⁹ C.m
now dipole pointing to the right;
P→
(-) ---------------->(+)
d
so let distance between the dipoles be d
∴ P = d
Let = 1 nC
so
P = d
1 × 10⁻⁹ = 1 × 10⁻⁹ × d
d = (1 × 10⁻⁹) / (1 × 10⁻⁹)
d = 1 m
Also Let = 2 nC
so
P = d
1 × 10⁻⁹ = 2 × 10⁻⁹ × d
d = (1 × 10⁻⁹) / (2 × 10⁻⁹)
d = 0.5 m
Also Let = 3 nC
so
P = d
1 × 10⁻⁹ = 3 × 10⁻⁹ × d
d = (1 × 10⁻⁹) / (3 × 10⁻⁹)
d = 0.33 m
such that;
charge distance
1 nC 1.00 m
2 nC 0.50 m
3 nc 0.33 m
4 nC 0.25 m
5 nC 0.20 m
Answer:
The spring constant is 215.6 N/m.
Explanation:
Given that,
Distance = 39 cm
Compresses length = 29 cm
Mass = 2.2 kg
We need to calculate the distance
Using formula of distance
Put the value into the formula
We need to calculate the spring constant
Using formula of restoring force
Where, F = force
x = distance
Put the value into the formula
Hence, The spring constant is 215.6 N/m.