According to Boyle's Law, P1V1 = P2V2
where P1 and V1 are initial pressure and volume respectively. P2 and V2 are final pressure and volume receptively.
Given: P2 = 4 P1 and V1 = 10.0l
∴ V2 = 2.5 l
Answer: Final volume of system is 2.5 l
Answer: 4.41 atm
Explanation:
Given that,
Original pressure of oxygen gas (P1) = 5.00 atm
Original temperature of oxygen gas (T1) = 25°C
[Convert 25°C to Kelvin by adding 273
25°C + 273 = 298K
New pressure of oxygen gas (P2) = ?
New temperature of oxygen gas (T2) = -10°C
[Convert -10°C to Kelvin by adding 273
-10°C + 273 = 263K
Since pressure and temperature are given while volume is held constant, apply the formula for Charle's law
P1/T1 = P2/T2
5.00 atm /298K = P2/263K
To get the value of P2, cross multiply
5.00 atm x 263K = 298K x V2
1315 atm•K = 298K•V2
V2 = 1315 atm•K / 298K
V2 = 4.41 atm
Thus, the new pressure inside the canister is 4.41 atmosphere
The problem applies Charles' law since constant pressure with varying volume and temperature are given. Assuming ideal gas law, the equation to be used is

=

. We make sure the temperatures are expressed in Kelvin, hence the given added with 273. The volume 2 is equal to 25.2881 liters.
Answer:
false
Explanation:
Atoms of the same element that differ in their numbers of neutrons are called isotopes. Many isotopes occur naturally. ... Different isotopes of an element generally have the same physical and chemical properties because they have the same numbers of protons and elec