Na 2Co3
1*23=23. 2*12=24. 6*16=96
23+24+96=143
(23*100)/143. (24*100)/143. (96*100)/143
=16%. =16.7%. =67.1%
Answer:
94.2 g/mol
Explanation:
Ideal Gases Law can useful to solve this
P . V = n . R . T
We need to make some conversions
740 Torr . 1 atm/ 760 Torr = 0.974 atm
100°C + 273 = 373K
Let's replace the values
0.974 atm . 1 L = n . 0.082 L.atm/ mol.K . 373K
n will determine the number of moles
(0.974 atm . 1 L) / (0.082 L.atm/ mol.K . 373K)
n = 0.032 moles
This amount is the weigh for 3 g of gas. How many grams does 1 mol weighs?
Molecular weight → g/mol → 3 g/0.032 moles = 94.2 g/mol
Answer:
A) It's correctly written
B) 77%
C) 835 calories
Explanation:
A) From online sources, we have number of calories as follows;
Fats: 9 calories per gram
Protein; 4 calories per gram
Carbs; 4 calories per gram
Total calories for each;
Total fat = 3 × 9 = 27 calories
Total protein = 3 × 4 = 12 calories
Total carbs = 32 × 4 = 128 calories
(sugar and dietary Fibre are classified as carbohydrates and so total carbs takes care of their calories).
Thus, total number of calories per serving = 27 + 12 + 128 = 167 calories per serving which is same as what is given.
B) percent from carbohydrates per serving = total calories from carbs/total number of calories per serving × 100% = 128/167 × 100% ≈ 77%
C) One box contains 5 servings. Thus total number of calories per box = 167 × 5 = 835 calories
Answer:
Therefore the equilibrium number of vacancies per unit cubic meter =2.34×10²⁴ vacancies/ mole
Explanation:
The equilibrium number of of vacancies is denoted by
.
It is depends on
- total no. of atomic number(N)
- energy required for vacancy
- Boltzmann's constant (k)= 8.62×10⁻⁵ev K⁻¹
- temperature (T).

To find equilibrium number of of vacancies we have find N.

Here ρ= 8.45 g/cm³ =8.45 ×10⁶m³
= Avogadro Number = 6.023×10²³
= 63.5 g/mole

g/mole
Here
=0.9 ev/atom , T= 1000k
Therefore the equilibrium number of vacancies per unit cubic meter,

=2.34×10²⁴ vacancies/ mole