Answer:
200N
Explanation:
EVERY FORCE IS OPPOSED BY AN EQUAL FORCE, REGARDLESS OF THE WEIGHT OF THE OBJECTS APPLYING THE FORCE.
Answer:
b. 20 sec
Explanation:
y = y₀ + v₀ t + ½ g t²
0 = 0 + (100) t + ½ (-10) t²
0 = 100t − 5t²
0 = t (100 − 5t)
t = 0, t = 20
The body lands after 20 seconds.
When the ball starts its motion from the ground, its potential energy is zero, so all its mechanical energy is kinetic energy of the motion:

where m is the ball's mass and v its initial velocity, 20 m/s.
When the ball reaches its maximum height, h, its velocity is zero, so its mechanical energy is just gravitational potential energy:

for the law of conservation of energy, the initial mechanical energy must be equal to the final mechanical energy, so we have

From which we find the maximum height of the ball:

Therefore, the answer is
yes, the ball will reach the top of the tree.
Answer:
32.3 m/s
Explanation:
The ball follows a projectile motion, where:
- The horizontal motion is a uniform motion at costant speed
- The vertical motion is a free fall motion (constant acceleration)
We start by analyzing the horizontal motion. The ball travels horizontally at constant speed of

and it covers a distance of
d = 165 m
So, the total time of flight of the ball is

In order to find the vertical velocity of the ball, we have now to analyze its vertical motion.
The vertical motion is a free-fall motion, so the ball is falling at constant acceleration; therefore we can use the following suvat equation:

where
is the vertical velocity at time t
is the initial vertical velocity
is the acceleration of gravity (taking downward as positive direction)
Substituting t = 3.3 s (the time of flight), we find the final vertical velocity of the ball: