An object distance is
presented as s = 5f and we know that the mirror equation relates the image
distance to the object distance and the focal length.
The mirror equation is
1/f = 1/s + 1/s’ where the variable f stands for
the focal length of the mirror. Variable (s)
represents the distance between the mirror surface and the object and the
variable <span>(s’) represents the distance between the mirror surface and
the image. </span>
In addition, a concave mirror
will have a positive focal length (f) and a convex mirror will have a negative
focal length (f).
Now, we then have 1/f = 1/5f
+ 1/s’ which is s’ = 5f/4
Then we get the magnification
ratio that expresses the size or amount of magnification or reduction of the
object or image and to get the magnification, we use this equation: M= s’/s
M= 5f/4x5f
s’ = 1/4s
Therefore, the image height
is one fourth of the object height
In this question force is measured in g cm/s2 so we know that to get the answer we times g by cm/s2
50 × 20 = 1000
Answer:
The thrown rock will strike the ground
earlier than the dropped rock.
Explanation:
<u>Known Data</u>


, it is negative as is directed downward
<u>Time of the dropped Rock</u>
We can use
, to find the total time of fall, so
, then clearing for
.
![t_{D}=\sqrt[2]{\frac{300m}{4.9m/s^{2}}} =\sqrt[2]{61.22s^{2}} =7.82s](https://tex.z-dn.net/?f=t_%7BD%7D%3D%5Csqrt%5B2%5D%7B%5Cfrac%7B300m%7D%7B4.9m%2Fs%5E%7B2%7D%7D%7D%20%3D%5Csqrt%5B2%5D%7B61.22s%5E%7B2%7D%7D%20%3D7.82s)
<u>Time of the Thrown Rock</u>
We can use
, to find the total time of fall, so
, then,
, as it is a second-grade polynomial, we find that its positive root is
Finally, we can find how much earlier does the thrown rock strike the ground, so 
The time taken by traveler to cover the distance is,

Substitute the known values,

Therefore, the time taken by traveler to cover the distance is 89.3 s.
<span>internet tension = mass * acceleration internet tension = 23 – Friction tension = 14 * acceleration Friction tension = µ * 14 * 9.8 = µ * 137.2 23 – µ * 137.2 = 14 * acceleration Distance = undemanding speed * time undemanding speed = ½ * (preliminary speed + very final speed) Distance = ½ * (preliminary speed + very final speed) * time Distance = 8.a million m, preliminary speed = 0 m/s, very final speed = a million.8 m/s 8.a million = ½ * (0 + a million.8) * t Time = 8.a million ÷ 0.9 = 9 seconds Acceleration = (very final speed – preliminary speed) ÷ time Acceleration = (a million.8 – 0) ÷ 9 = 0.2 m/s^2 23 – µ * 137.2 = 14 * 0.2 resolve for µ</span>