Answer:
Explanation:
The resistance of a wire can be given by the following expression

where R is resistance , ρ is specific resistance , L is length of wire and A is cross sectional area
specific resistance of metals are almost the same . So in the present case ρ and l are same . Hence the formula becomes
R = k / A where k is a constant .
The diameter of wire becomes two times hence area of cross section becomes 4 times or 4A .
Resistance becomes 1/4 times . Hence if resistance of metal wire is R , resistance of silver wire will be R / 4 .
current = voltage / resistance
In case of metal wire
8 x 10⁻³ = V / R
In case of silver wire
I = V / (R / 4 ) , I is current , V is potential difference .
I = 4 x V/R
= 4 x 8 x 10⁻³ A
= 32 mA.
Drag is usually ignored because its effect on the horizontal velocity is usually negligible due to the short time of flight.
An object's surface area and geometry, along with the object's surrounding wind speed will affect the drag force.
In most cases, drag force will cause the object to land horizontally closer to the predicted landing point as drag is a resistive force.
Answer:
The answer is below
Explanation:
The amplitude decreases by 2% during each oscillation. Hence the decrease in amplitude can be represented by an exponential decay in the form:
y = abˣ; where x ad y are variables, a is the initial value and b is the factor.
Let y represent the amplitude after x oscillations. Since the initial amplitude is 10 cm, hence:
a = 10 cm, b = 2% = 0.02.
Therefore:
y = 10(0.02)ˣ
The amplitude after 25 oscillations is gotten by substituting x = 25 into the equation. Hence:
y = 10(0.02)²⁵
y= 3.355 * 10⁻⁴² cm
The amplitude after 25 oscillations is 3.355 * 10⁻⁴² cm
V^2 = 2a S
V = square root ( 2 x 0.5 . 4)
V = 2 m/s
Answer is B