Let suppose the Gas is acting Ideally, Then According to Ideal Gas Equation,
P V = n R T
Solving for P,
P = n R T / V ----- (1)
Data Given;
Moles = n = 1.20 mol
Volume = V = 4 L
Temperature = T = 30 + 273 = 303 K
Gas Constant = R = 0.08206 atm.L.mol⁻¹.K⁻¹
Putting Values in Eq.1,
P = (1.20 mol × 0.08206 atm.L.mol⁻¹.K⁻¹ × 303 K) ÷ 4 L
P = 7.45 atm
For the answer to the question above asking w<span>hich of the following would likely form a heterogeneous mixture?
The answer would be</span> <span>sand and water
other choices like
,baking soda salt and sugar are soluble in water and form homogeneous solution</span>
The following aqueous solutions represents good buffer systems:
- 0.22 M acetic acid + 0.15 M potassium acetate
- 0.29 M ammonium nitrate + 0.32 M ammonia
<h3>What is a buffer?</h3>
A buffer is a solution used to stabilize the pH (acidity) of a liquid.
A good buffer system is generally known to contain close or equal concentrations of a weak acid and its conjugate base.
Based on the above explanation, the following represents a good buffer system as they are between their weak acid and conjugate base:
- 0.22 M acetic acid + 0.15 M potassium acetate
- 0.29 M ammonium nitrate + 0.32 M ammonia
Learn more about buffer at: brainly.com/question/22821585
#SPJ1
Answer:
The mass of the element is 141.03701 amu
Explanation:
The catch here is that it notes a " newly found element. " Otherwise you could just refer to the average atomic mass of the element in the periodic table, and receive your solution in a much faster way.
The first isotope has an atomic mass of 139.905 amu, and a respective percent abundance of 37.25%. The second isotope has an atomic mass of 141.709 amu, and the remaining percent abundance, 100% - 37.25% = 62.75% ( given ). We can calculate the mass of the unknown element by associating each percentage with the mass of their respective isotope, over 100%.
Mass = ( ( 139.905 amu )( 37.25% ) + ( 141.709 amu )( 62.75% ) )/ 100,
Mass = ( ( 5211.46125 ) + ( 8892.23975 ) ) / 100,
Mass = ( 14103.701 ) / 100 = 141.03701 amu
Answer:
Explanation:
The Lewis structure of ammonia, NH3 , would be three hydrogen atoms bonded to a nitrogen atom in the middle, with a lone pair of electrons on top of the atom. This is the reason why ammonia acts as a Lewis base, as it can donate those electrons