The answer is c.
Sound, light and heat energy.
Hope this helped :)
A good hypothesis describes your ideas and how you think the experiment will conclude. Additionally, hypotheses have scientific information included.
First, we determine the volume of the trunk by finding
first the radius from the circumference through the equation,
<span> C
= 2πr</span>
<span> r
= C/2π</span>
Substituting the known values,
<span> r
= 4.5/2π = 0.716 m</span>
Then, we calculate for the volume through the equation,
<span> V
= πr2h</span>
<span> V
= π(0.716 m)2(8m) = 12.9 m3</span>
Multiplying the calculated value to the density will give
the mass as,
<span> Mass
= (12.9 m3)(752 kg/m3) = <span>9699.36 kg</span></span>
Answer:
The electric potential at the midpoint between the two particles is 3.349 X 10⁻³ Volts
Explanation:
Electric potential is given as;
V = E*r
where;
E is the electric field strength, = kq/r²
V = ( kq/r²)*r
V = kq/r
k is coulomb's constant = 8.99 X 10⁹ Nm²/C²
q is the charge of the particles = 1.6 X 10⁻¹⁹ C
r is the distance between the particles = 859 nm
At midpoint, the distance = r/2 = 859nm/2 = 429.5 nm
V = (8.99 X 10⁹ * 1.6 X 10⁻¹⁹)/ (429.5 X 10⁻⁹)
V = 3.349 X 10⁻³ Volts
Therefore, the electric potential at the midpoint between the two particles is 3.349 X 10⁻³ Volts
<span>One end of a uniform meter stick is placed against a vertical wall. The other end is held by a lightweight cord that makes an angle, theta, with the stick. The coefficient of static friction between the end of the meter stick and the wall is 0.390. A. what is the maximum value...</span>