The answer is Alternating Current
Answer:
<em>faster and at a higher luminosity and temperature.</em>
Explanation:
A protostar looks like a star but its core is not yet hot enough for fusion to take place. The luminosity comes exclusively from the heating of the protostar as it contracts. Protostars are usually surrounded by dust, which blocks the light that they emit, so they are difficult to observe in the visible spectrum.
A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.
Stars above about 200 solar masses (Higher mass) generate power so furiously that gravity cannot contain their internal pressure. These stars blow themselves apart and do not exist for long if at all. A protostar with less than 0.08 solar masses never reaches the 10 million K temperature needed for efficient hydrogen fusion. These result in “failed stars” called brown dwarfs which radiate mainly in the infrared and look deep red in color. They are very dim and difficult to detect, but there might be many of them, and in fact they might outnumber other stars in the universe.
That is why higher mass protostars enter the main sequence at a <em>faster and at a higher luminosity and temperature.</em>
Answer:
extrusive I'm pretty sure that's right
False: the force of gravity acting on different objects is different and depends on their mass
Explanation:
The answer is false.
The force of gravity acting on an object (also known as weight) near the Earth's surface is given by:

where:
m is the mass of the object
is the acceleration of gravity
We see from the formula that the force of gravity acting on an object depends on the mass: the larger the mass of the object, the stronger the gravitational force acting on it, and the smaller the mass, the weaker the force of gravity.
The factor that does not change is the acceleration of gravity, which is constant (
) if we are near the Earth's surface, and implies that all the objects in free fall accelerate at the same rate towards the ground, regardless of their size and weight.
Learn more about forces and weight here:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly