Answer:
The velocity of the leaf relative to the jogger is 5 m/s.                    
Explanation:
Given that,
Velocity of jogger wrt to the ground, 
velocity of leaf wrt the ground, 
We need to find the velocity of the leaf relative to the jogger. Let it is equal to V. So, it is given by :

So, the velocity of the leaf relative to the jogger is 5 m/s. Hence, this is the required solution.
 
        
             
        
        
        
The acceleration due to gravity is less at the top of mt. everest because its so far from the center of the earth .
        
             
        
        
        
The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is
1/2 • (10.0 m/s) • (4.0 s) = 20.00 m
Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as
<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>
and under constant acceleration,
<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2
According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so
∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2
∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2
∆<em>x</em> = 20.00 m
 
        
             
        
        
        
Answer: b
Explanation: the two pieces will repel as both have obtained a static charge.