Answer:
The fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is

Explanation:
From the question we are told that
The time constant 
The potential across the capacitor can be mathematically represented as

Where
is the voltage of the capacitor when it is fully charged
So at


Generally energy stored in a capacitor is mathematically represented as

In this equation the energy stored is directly proportional to the the square of the potential across the capacitor
Now since capacitance is constant at
The energy stored can be evaluated at as


Hence the fraction of the energy stored in an initially uncharged capacitor is

Answer:
The heat capacity of a sample is 37.7 J/K.
Explanation:
Given that,
Submerged temperature of tissue sample = 275 K
Mass of liquid nitrogen= 2 kg
Temperature = 70 K
Final temperature = 75 K
We need to calculate the heat
Using formula of heat

Put the value into the formula


We need to calculate the heat capacity of a sample
Using formula of heat capacity

Put the value into the formula


Hence, The heat capacity of a sample is 37.7 J/K.
False, rubber is a poor conductor but is a good insulator.
Answer:
\Delta E=1.22\times 10^{-22}J
Explanation:
The energy of electron in any state is given by
here h is planck's constant n is state of electron L is the infinte potential well m is the mass of electron
We know that 
Potential well dimension = 
Mass of electron 
So energy required to electron to jump from ground state to 3rd state



Answer:
Time of ascent is greater than time of descent.
Explanation:
The gravitational force always acts in the downward direction. The air drag always opposes the motion.
During ascent, the gravitational force and air drag act in opposite direction to the motion where as during descent, only air drag acts in opposite direction to the motion of the ball while gravitational force acts in the same direction. Thus, the time of ascent and descent become unequal with time of ascent being greater than time of descent.