The strength of the electric and magnetic fields there is no physical "distance" of oscillation here. nothing is actually moving up and down if you draw light as a sinusoidal wave, the up and down motion is the strength of the EM fields cheers
Answer:
(a) Magnitude of static friction force is 109 N
(b) Minimum possible value of static friction is 0.356
Solution:
As per the question;
Horizontal force exerted by the girl, F = 109 N
Mass of the crate, m = 31.2 kg
Now,
(a) To calculate the magnitude of static friction force:
Since, the crate is at rest, the forces on the crate are balanced and thus the horizontal force is equal to the frictional force, f:
F = f = 109 N
(b) The maximum possible force of friction between the floor and the crate is given by:

where
N = Normal reaction = mg
Thus

For the crate to remain at rest, The force exerted on the crate must be less than or equal to the maximum force of friction.




First is melts then it expands next it gets cooler Finally it gains ener. Hope this helps you out.
The bimetallic strip in a fire alarm is made of two metals with different expansion rates bonded together to form one piece of metal. Typically, the low-expansion side is made of a nickel-iron alloy called Invar, while the high-expansion side is an alloy of copper or nickel. The strip is electrically energized with a low-voltage current. When the strip is heated by fire, the high-expansion side bends the strip toward an electrical contact. When the strip touches that contact, it completes a circuit that triggers the alarm to sound. The width of the gap between the contacts determines the temperature that will set off the alarm.