Answer:
- The energy that must be added to the electron to move it to the third excited state is -1.153 eV
- The energy that must be added to the electron to move it to the fourth excited state is -1.181 eV
Explanation:
Given;
Energy of electron in ground state (n = 1 ) = 1.23 eV
E₁ = 1.23 eV
Eₙ = E₁ /n²
where;
E₁ is the energy of the electron in ground state
n is the energy level,
For third excited state, n = 4
E₄ = E₁ /4²
E₄ = (1.23 eV) / 16
E₄ = 0.077 eV
Change in energy level, = E₄ - E₁ = 0.077 eV - 1.23 eV = -1.153 eV
The energy that must be added to the electron to move it to the third excited state is -1.153 eV
For fourth excited state, n = 5
E₅ = E₁ /5²
E₄ = (1.23 eV) / 25
E₄ = 0.049 eV
Change in energy level, = E₅ - E₁ = 0.049 eV - 1.23 eV = -1.181 eV
The energy that must be added to the electron to move it to the fourth excited state is -1.181 eV
Answer:
this is because the light rays get reflected irregularly
Explanation:
Australia separated from other continents and species there evolved independently
Answer:
magnetic trains works at the principle of repel on of the advantage is that they are fast and dont really need diesel
Answer:
Q = - 256 X 10⁻⁷ C .
Explanation:
Electric field due to a charge Q at a distance d from the center is given by the expression
E = k Q /d² Where k is a constant and it is equal to 9 x 10⁹
Put the given value in the equation
9 x 10² =
Q =
Q = - 256 X 10⁻⁷ C .
It will be negative in nature as the field is directed towards the center.