Answer:
θ = 22.2
Explanation:
This is a diffraction exercise
a sin θ = m λ
The extension of the third zero is requested (m = 3)
They indicate the wavelength λ = 630 nm = 630 10⁻⁹ m and the width of the slit a = 5 10⁻⁶ m
sin θ = m λ / a
sin θ = 3 630 10⁻⁹ / 5 10⁻⁶
sin θ = 3.78 10⁻¹ = 0.378
θ = sin⁻¹ 0.378
to better see the result let's find the angle in radians
θ = 0.3876 rad
let's reduce to degrees
θ = 0.3876 rad (180º /π rad)
θ = 22.2º
Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency 
Velocity of the string wave is equal to 
Power of wave propagation is equal to 
So power of the wave will be equal to 5.464 watt
Answer:
972 J
Explanation:
At the bottom, all the gravitational potential energy was converted into kinetic energy. If you calculate the GPE, its value will be the same that the KE at the bottom. The GPE can be calculated this way:
GPE = mass×gravity×heigth
GPE = 2.2×9.8×45.08 ≈ 972
Command module ✅
service module
lunar module
annum module
First, balance the reaction:
_ KClO₃ ==> _ KCl + _ O₂
As is, there are 3 O's on the left and 2 O's on the right, so there needs to be a 2:3 ratio of KClO₃ to O₂. Then there are 2 K's and 2 Cl's among the reactants, so we have a 1:1 ratio of KClO₃ to KCl :
2 KClO₃ ==> 2 KCl + 3 O₂
Since we start with a known quantity of O₂, let's divide each coefficient by 3.
2/3 KClO₃ ==> 2/3 KCl + O₂
Next, look up the molar masses of each element involved:
• K: 39.0983 g/mol
• Cl: 35.453 g/mol
• O: 15.999 g/mol
Convert 10 g of O₂ to moles:
(10 g) / (31.998 g/mol) ≈ 0.31252 mol
The balanced reaction shows that we need 2/3 mol KClO₃ for every mole of O₂. So to produce 10 g of O₂, we need
(2/3 (mol KClO₃)/(mol O₂)) × (0.31252 mol O₂) ≈ 0.20835 mol KClO₃
KClO₃ has a total molar mass of about 122.549 g/mol. Then the reaction requires a mass of
(0.20835 mol) × (122.549 g/mol) ≈ 25.532 g
of KClO₃.