The only thing you need to know in order to solve this task is that <span>plank length (which is force x), should equal the increase in potential energy, so what we have now : (mass)* g * (height).
It has to look like that: </span>
<span>F * 3.0 = 150 x 9.81 x 1.20
Then solve for F, the result should be in newtones = 588N
Do hope it makes sense.</span>
In spring mass system we know that angular frequency is given as

f = 8.38 Hz


now we know that speed of SHM at its extreme position is given by

here we know that
A = 17.5 cm


so maximum speed is 9.21 m/s
Answer:
1/8 = (1/2)^3
This implies the sample has decayed for 3 half lives
3 * 5730 yrs = 17,200 years
<span>analyze. Analyze means to study or examine
something carefully in a methodical way. ... This verb analyze comes
from the noun analysis. The noun analysis was in turn borrowed from
Greek, from analyein, or "to dissolve."
hope it helps;)
</span>
The work-energy theorem states that the change in kinetic energy of the particle is equal to the work done on the particle:

The work done on the particle is the integral of the force on dx:

So, this corresponds to the change in kinetic energy of the particle.