Answer:
19.53 cm
Explanation:
The computation of the height is as follows:
Here we applied the conservation of the energy formula
As we know that
P.E of the block = P.E of the spring
m g h = ( 1 ÷ 2) k x^2
where
m = 0.15
g = 9.81
k = 420
x = 0.037
So now put the values to the above formula
(0.15) (9.81) (h) = 1 ÷2 × 420 × (0.037)^2
1.4715 (h) = 0.28749
h = 0.19537 m
= 19.53 cm
Answer: 0.25 m/s
Explanation: Speed = wavelengt · frequency
v = λf and frequency is 1/period f = 1/T
Then v = λ/T = 5 m / 20 s = 0.25 m/s
Answer:
The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
Explanation:
Given that,
Wavelength = 400 nm
Energy 
We need to calculate the longest wavelength of light that is capable of ejecting electrons from that metal
Using formula of energy


Put the value into the formula



Hence, The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
Answer:
Both
Explanation:
The lithosphere is part of both the crust and the mantle.
It is the surface layer of the earth and also the most rigid layer. It is formed by the crust and the outermost part of the mantle. It is divided into two types: continental lithosphere and oceanic lithosphere.
The oceanic lithosphere has an approximate thickness of 50 - 100km, and the continental olithosphere of 40 - 200km.
Answer: As Earth rotates, the Moon's gravity causes the oceans to seem to rise and fall. ... There is a little bit of friction between the tides and the turning Earth, causing the rotation to slow down just a little. As Earth slows, it lets the Moon creep away.
Explanation: