More mass, more inertia, less speed, more momentum because momentum is depends its mass and speed. Hope it helps
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>:</em><em>)</em>
<em>✌</em><em>✌</em><em>✌</em><em>✌</em><em>✌</em><em>✌</em>
Answer
Integral EdA = Q/εo =C*Vc(t)/εo = 3.5e-12*21/εo = 4.74 V∙m <----- A)
Vc(t) = 21(1-e^-t/RC) because an uncharged capacitor is modeled as a short.
ic(t) = (21/120)e^-t/RC -----> ic(0) = 21/120 = 0.175A <----- B)
Q(0.5ns) = CVc(0.5ns) = 2e-12*21*(1-e^-t/RC) = 30.7pC
30.7pC/εo = 3.47 V∙m <----- C)
ic(0.5ns) = 29.7ma <----- D)
Answer:
1.925 μC
Explanation:
Charge: This can be defined as the product of the capacitance of a capacitor and the voltage. The S.I unit of charge is Coulombs (C)
The formula for the charge stored in a capacitor is given as,
Q = CV ................... Equation 1
Where Q = charge, C = Capacitor, V = Voltage.
Note: 1 μF = 10⁻⁶ F
Given: C = 0.55 μF = 0.55×10⁻⁶ F, V = 3.5 V.
Substitute into equation 1
Q = 0.55×10⁻⁶×3.5
Q = 1.925×10⁻⁶ C.
Q = 1.925 μC
Hence the charge on the plate = 1.925 μC