Answer:
Correct option: (a) 0.1452
Step-by-step explanation:
The new test designed for detecting TB is being analysed.
Denote the events as follows:
<em>D</em> = a person has the disease
<em>X</em> = the test is positive.
The information provided is:

Compute the probability that a person does not have the disease as follows:

The probability of a person not having the disease is 0.12.
Compute the probability that a randomly selected person is tested negative but does have the disease as follows:
![P(X^{c}\cap D)=P(X^{c}|D)P(D)\\=[1-P(X|D)]\times P(D)\\=[1-0.97]\times 0.88\\=0.03\times 0.88\\=0.0264](https://tex.z-dn.net/?f=P%28X%5E%7Bc%7D%5Ccap%20D%29%3DP%28X%5E%7Bc%7D%7CD%29P%28D%29%5C%5C%3D%5B1-P%28X%7CD%29%5D%5Ctimes%20P%28D%29%5C%5C%3D%5B1-0.97%5D%5Ctimes%200.88%5C%5C%3D0.03%5Ctimes%200.88%5C%5C%3D0.0264)
Compute the probability that a randomly selected person is tested negative but does not have the disease as follows:
![P(X^{c}\cap D^{c})=P(X^{c}|D^{c})P(D^{c})\\=[1-P(X|D)]\times{1- P(D)]\\=0.99\times 0.12\\=0.1188](https://tex.z-dn.net/?f=P%28X%5E%7Bc%7D%5Ccap%20D%5E%7Bc%7D%29%3DP%28X%5E%7Bc%7D%7CD%5E%7Bc%7D%29P%28D%5E%7Bc%7D%29%5C%5C%3D%5B1-P%28X%7CD%29%5D%5Ctimes%7B1-%20P%28D%29%5D%5C%5C%3D0.99%5Ctimes%200.12%5C%5C%3D0.1188)
Compute the probability that a randomly selected person is tested negative as follows:


Thus, the probability of the test indicating that the person does not have the disease is 0.1452.
Since it turns downwards (the shape on an "n", it is a maximum point)
Maximum point occurs at (-2, 1)
Answer: (B) (-2, 1) maximum
Answer:
x = 3, y = 1 is the solution of the given system.
Step-by-step explanation:
Here, the given system of equations is:
y = -x + 4 ...... (1)
y = x - 2 .......... (2)
Now, to find the solution of the system, SUBSTITUTE the value of y from equation (1) in to the equation (2). We get ,
y = x - 2 ⇒ -x + 4 = x - 2 ( as from (1), y = -x + 4)
or, -x -x = -2 -4
or, - 2 x = -6 ⇒ x = 6/2 = 3
or, x = 3
⇒ y = x - 2 = 3 - 2 = 1
⇒ y = 1
Hence, x = 3, y = 1 is the solution of the given system.
The given problem describes a binomial distribution with p = 60% = 0.6. Given that there are 400 trials, i.e. n = 400.
a.) The mean is given by:

The standard deviation is given by:

b.) The mean means that in an experiment of 400 adult smokers, we expect on the average to get about 240 smokers who started smoking before turning 18 years.
c.) It would be unusual to observe <span>340 smokers who started smoking before turning 18 years old in a random sample of 400 adult smokers because 340 is far greater than the mean of the distribution.
340 is greater than 3 standard deviations from the mean of the distribution.</span>
Answer:
It should be -64
Step-by-step explanation: