Answer : The mass of oxygen formed must be 3.8 grams.
Explanation :
Law of conservation of mass : It states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The balanced chemical reaction will be,

According to the law of conservation of mass,
Total mass of reactant side = Total mass of product side
Total mass of
= Total mass of 
As we are given :
The mass of
= 25.3 grams
The mass of
= 23.4 grams
So,



Therefore, the mass of oxygen formed must be 3.8 grams.
Hello! The correct answer is, B. are in motion outside the nucleus.
I hope this helped!
Answer:
1.47 atm
Explanation:
Step 1: Given data
- Initial volume (V₁): 32.4 L
- Initial pressure (P₁): 1 atm (standard pressure)
- Initial temperature (T₁): 273 K (standard temperature)
- Final volume (V₂): 28.4 L
- Final temperature (T₂): 352 K
Step 2: Calculate the final pressure of the gas
We can calculate the final pressure of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
P₂ = P₁ × V₁ × T₂ / T₁ × V₂
P₂ = 1 atm × 32.4 L × 352 K / 273 K × 28.4 L = 1.47 atm
Latent heat, also called the heat of vaporization, is the amount of energy necessary to change a liquid to a vapour at constant temperature and pressure. The energy required to melt a solid to a liquid is called the heat of fusion