Answer:
Limiting reactant: O2
grams NO2 produced = 230.276 g NO2
grams of NO unused = 26.67 gNO
Explanation:
2NO + O2 --> 2NO2
Step 1: Determine the molar ratio NO:O2
molar ratio NO:O2 = 5.895: 2.503 = 2.35
stoichiometric molar ratio NO:O2 = 2:1
So, O2 is the limiting reactant.
Step2: Determine the grams of NO2:
?g NO2 = moles O2 x (2moles NO2/1 mol O2) x (MM NO2/ 1 mol NO2) = 2.503 x 2 x 46 = 230.276 g NO2
Step 3: Determine the amount of excess reagent unreacted
moles excess NO reacted = moles O2 x (2 moles NO/1 mol O2) = 2.503 x 2 = 5.006 moles NO reacted
moles NO unreacted = total moles NO - moles NO reacted = 5.895-5.006 =0.889 moles NO unreacted
mass NO unreacted = moles NO unreacted x MM NO = 0.889 x 30 =26.67 g NO unreacted
Answer:
the answer would be Halogens
Answer:
Explanation:
While trying to write the chemical formula for a compound (a neutral molecule), one must identify and exchange the charge of the cation with that of the anion to become the subscript of one other. For example
Aluminium oxide has Aluminium (Al) and oxygen (O); since Al has a charge of 3+ (the cation) and O has a charge of 2- (the anion), the compound would have it's charges as Al³⁺O²⁻ and when the charges are exchanged to there subscripts, it would form Al₂O₃; thus there would be two cations of aluminium for every three anions of oxygen in order to have a neutral molecule.
This same explanation can be given to Aluminium sulfite. Aluminium sulfite has Aluminium (Al) and sulfite (SO₃). Al has a charge of 3+ (cation) while sulfite has a charge of 2- (anion), with the compound having it's charges as Al³⁺(SO₃)²⁻ and when the charges are exchanged to there subscripts, it would form Al₂(SO₃)₃ and would thus have 2 cations of aluminium (Al³⁺) for every 3 anions of sulfite (SO₃³⁻) in order to have a neutral molecule.
No chemical bonding take place.
And the elements or compounds in the mixtures have no definite proportions.
It should be an Ion. Sorry.