Answer:
- <em>The solution that has the highest concentration of hydroxide ions is </em><u>d. pH = 12.59.</u>
Explanation:
You can solve this question using just some chemical facts:
- pH is a measure of acidity or alkalinity: the higher the pH the lower the acidity and the higher the alkalinity.
- The higher the concentration of hydroxide ions the lower the acidity or the higher the alkalinity of the solution, this is the higher the pH.
Hence, since you are asked to state the solution with the highest concentration of hydroxide ions, you just pick the highest pH. This is the option d, pH = 12.59.
These mathematical relations are used to find the exact concentrations of hydroxide ions:
- pH + pOH = 14 ⇒ pOH = 14 - pH
- pOH = - log [OH⁻] ⇒
![[OH^-]=10^{-pOH}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D)
Then, you can follow these calculations:
Solution pH pOH [OH⁻]
a. 3.21 14 - 3.21 = 10.79 antilogarithm of 10.79 = 1.6 × 10⁻¹¹
b. 7.00 14 - 7.00 = 7.00 antilogarithm of 7.00 = 10⁻⁷
c. 7.93 14 - 7.93 = 6.07 antilogarithm of 6.07 = 8.5 × 10⁻⁷
d. 12.59 14 - 12.59 = 1.41 antilogarithm of 1.41 = 0.039
e. 9.82 14 - 9.82 = 4.18 antilogarithm of 4.18 = 6.6 × 10⁻⁵
From which you see that the highest concentration of hydroxide ions is for pH = 12.59.
Example:
sample density of gasoline, 20 g of weigth into 5 <span>mL
Answer:
D = m / V
D = 20 g / 5 mL
D = 4 g/mL</span>
As glaciers melted at the end of the last Ice Age worldwide sea level increased immensely and river plains were flooded. Glaciers are floating bodies of ice. Ice is frozen water. When glaciers started melting water that had been frozen for decades or centuries was released back into the ocean. That lead to an increase in sea level. This also led to river plains being drowned/flooded. Therefore, the answer is 1 and 2.
Answer:
A. Yes, the substance must be water.
Explanation:
The density of a substance is unique to it. Density is defined the as the amount of substance contained per volume.
One of the ways of identifying a substance is to determine its density. Every matter is known to have their own specific densities. This makes them different from other substances. The density of gold is unique to it and it differs from that of silver.
In fact, water has density of 1.00gcm⁻³. Experimental errors and some little factors must have altered our expected figure. This a case of precision and accuracy in the experiment.
Answer:
368.92g
Explanation:
Firstly, let's balance the equation which is
2NO + O₂ ---> 2NO₂
Starting with 8.02 mol of NO let's calculate the moles of oxygen which is in a 2 : 1 molar ratio
2NO + O₂
2 : 1
8.02 mol : x mol
Moles of O₂ = 8.02 ÷ 2 = 4.01 mol
Doing the same thing for 18.75 mol of O₂ to calculate the number of moles of NO
2NO + O₂
2 : 1
x mol : 18.75 mol
Moles of NO = 18.75 × 2 = 37.5 however we are told we have 8.02 moles of NO, so we are unable to use 18.75 mol of O₂
Using 8.02 mol of NO to figure out the number of moles of NO₂ :
2NO : 2NO₂
They have the same molar ratio of 2 : 2, so the number of moles is 8.02
Using formula moles = mass / Molar mass
Rearranging to find mass = moles × molar mass
Molar mass of NO₂ = 14 + 16 + 16 = 46
Mass = 46 × 8.02 = 368.92g