Answer : The rate law for the overall reaction is,
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
As we are given the mechanism for the reaction :
Step 1 : (slow)
Step 2 : (fast)
Overall reaction :
The rate law expression for overall reaction should be in terms of .
As we know that the slow step is the rate determining step. So,
The slow step reaction is,
The expression of rate law for this reaction will be,
Hence, the rate law for the overall reaction is,
<span>The cell must exchange materials with the environment across the surface membrane. An increase in size will result in a relatively greater increase in volume and mass than in surface area, so that the cell will lose effective exchange capacity.
</span>
Answer: D. A buildup of mostly methane gas, which is pontentially explosive.
Explanation:
Firedamp refers to a gas mixture, largely methane, that appear in underground coal mines. It is explosive at concentrations between 5 and 10% in the air.
Answer:
a) 210.3 g/mol
b) 210.2 g/mol
c) 384.5 g/mol
Explanation:
First step we will calculate the molar masses of ; carbon atom, hydrogen atom and oxygen atom in each .
<u> Molar mass of dibenzyl ketone</u>
Molar mass of dibenzyl ketone = ∑ molar masses of atoms in dibenzyl ketone
= carbon( 15 ) = 15 ( 12.0107 ) + oxygen ( 14 ) = 1 ( 15.999 ) + hydrogen(14) =14(1.00784)
= 210.26926 ≈ 210.3 g/mol
<u> Molar mass of benzil</u>
Molar mass of Benzil = ∑ molar masses of atoms in Benzil
= carbon( 14) = 14(12.0107) + oxygen(2) = 2 ( 15.999) + hydrogen(10) =10(1.00784)
= 210.2262 ≈ 210.2 g/mol
<u>Molar mass of 2,3,4,5-tetraphenylcyclopentadienone</u>
Molar mass = ∑ molar masses of atoms
= carbon ( 29) = 29(12.0107) + oxygen (1) = 1( 15.999 ) + hydrogen(20) = 20(1.00784 )
≈ 384.5 g/mol