A. HCl:
pH= -log [H3O+]
PH=-log (0.200)
= 0.699
poH= 14-0.699
= 13.301
b. NaOH:
PoH= -log [OH-]
= -log (0.0143)
= 1.845
pH= 14-poH
= 14- 1.845
= 12.16
c. HNO3:
PH= -log[H3O+]
=-log(3.0)
= -0.4771
poH= 14-pH
= 14-9-0.4771
= 14.4771
pH= -0.4771, poH= 14.4771
d. [Ca(OH)2] = 0.0031M
[OH-]= 2X0.0031
[OH-] = 0.0062M
PoH= - log[OH-]
=-log(0.0062)
=-log(6.2x10-3)
=-(-2.21)
= 2.21
PH=14-poH
=14-2.21
=11.79
POH=2.21, PH= 11.79
Answer: 7.79 grams of ethanol were put into the beaker.
Explanation:
To calculate the mass of ethanol, we use the equation:

Density of ethanol = 0.779 g/mL
Volume of water = 10.00 mL
Putting values in above equation, we get:

Thus 7.79 grams of ethanol were put into the beaker.
Each can hold two electrons
Answer :
- Boiling point of the sugar solution will be higher than that of water's boling point.
- Freezing point of the sugar solution will be lower than that of water's freezing point.
Explanation:
- Boiling point of a liquid is defined as temperature at which vapor pressure of liquid becomes equal to the atmospheric pressure.
Boiling point of solution is always higher than that of the pure solvent
Vapor pressure increases with increase in temperature which means sugar solution will be heated more to make vapor pressure equal to atmospheric pressure.
- Freezing point is defined as temperature at which solid and liquid phase are at equilibrium or temperature at which vapor pressure of liquid becomes equal to the vapor pressure in its solid phase.
Freezing point of solution is always lower than that of the pure solvent.
Lower the temperature, lower will be the vapor pressure which sugar solution solution will get freeze at lower temperature than that of the water.
<span>LiOH+HBr---> LiBr +h20. Moles of LiOH = 10/24 = 0.41moles. According to stoichiometry, moles of LiOH = moles of LiBr = 0.41moles. Therefore mass of LiBr =moles of LiBr x molecular weight of LiBr = o.41 x 87 = 35.67g. Hope it helps </span>