2H2+O2----->2H2O. I hope this helps
Answer:
Atoms are single neutral particles. Molecules are neutral particles made of two or more atoms bonded together.
Explanation:
Atom refers to the smallest constituent unit of a chemical element. Molecules refer to a group of two or more atoms that are held together due to chemical bonds.
Take the attached picture of a periodic table as a guide. You are finding for a solid metal. Therefore, streamline your choices by looking at elements written in black bold letters, because they are all solid. Next, if you look at the center, the legend for metals are colors in orange, yellow, flesh, lavender, pink, and cyan blue. These region would be your choices. Next, you want to find a metal that is shiny and ductile. The shiny appearance is a common characteristic of luster by materials. Ductility is the ability of a metal to stretch when under tensile stress. These properties are best exhibited by metals in the transitions metals colored in pink. Therefore, the answer to your question would be any of the metal in the pink area. Examples are Titanium, Chromium, Gold, Silver, Platinum, Tungsten, etc.
Answer:
54g of water
Explanation:
Based on the reaction, 1 mole of methane produce 2 moles of water.
To solve this question we must find the molar mass of methane in order to find the moles of methane added. With the moles of methane and the chemical equation we can find the moles of water produced and its mass:
<em>Molar mass CH₄:</em>
1C = 12g/mol*1
4H = 1g/mol*4
12g/mol + 4g/mol = 16g/mol
<em>Moles methane: </em>
24g CH₄ * (1mol / 16g) = 1.5 moles methane
<em>Moles water:</em>
1.5moles CH₄ * (2mol H₂O / 1mol CH₄) = 3.0moles H₂O
<em>Molar mass water:</em>
2H = 1g/mol*2
1O = 16g/mol*1
2g/mol + 16g/mol = 18g/mol
<em>Mass water:</em>
3.0moles H₂O * (18g / mol) =
<h3>54g of water</h3>
Answer:
b) sharpening a pencil
Explanation:
If you melt lead, boil water, or dissolve sugar in water, you can return all of them back to their original state. If you sharpen a pencil, you can't reattach the shavings as they were originally.