Tetrahedral arrangement is resulted upon mixing one s and three p atomic orbitals, resulting in 4 hybridized
orbitals →
hybridization.
<h3>What is
orbital hybridization?</h3>
In the context of valence bond theory, orbital hybridization (or hybridisation) refers to the idea of combining atomic orbitals to create new hybrid orbitals (with energies, forms, etc., distinct from the component atomic orbitals) suited for the pairing of electrons to form chemical bonds.
For instance, the valence-shell s orbital joins with three valence-shell p orbitals to generate four equivalent sp3 mixes that are arranged in a tetrahedral configuration around the carbon atom to connect to four distinct atoms.
Hybrid orbitals are symmetrically arranged in space and are helpful in the explanation of molecular geometry and atomic bonding characteristics. Usually, atomic orbitals with similar energies are combined to form hybrid orbitals.
Learn more about Hybridization
brainly.com/question/22765530
#SPJ4
Secretary of State John Hay sent his Open Door Notes (1899-1900) to world powers to protect United States trading interests in China. The correct option among all the options that are given in the question is option "3". These notes were mainly in regards to providing equal opportunity for trades in China and also respecting China's sovereignty, territorial integrity and administration. The principles of operating in China was the same for the British as well as for the United States, but John Hay was the first person to give it a written form. After this the official policy of the United States was based on the written document during the first half of the 20th century.
Answer:
0.0100M of AgNO3 contains 0.0100M of Ag+
Explanation:
AgNO3 when ionized yields Ag+ and NO3-. This means that the amount of AgNO3 in solution is equivalent to the amount of Ag+ and NO3- in that same solution.
1M of AgNO3 solution produces 1M of Ag+
1M of AgNO3 solution produces 1M of NO3-
This occurs because of the complete ionization of AgNO3 in solution, allowing complete dissolution of the compound.
Answer:
C7H603 + CH3OH --> C8H803 + H2O
Balanced equation with corresponding stoichiometric numbers.
Explanation:
the salicylic acid, also called aspirin, when reacting with methanol produced an irreversible reaction giving methyl salicylate and water