The hybridization for C in acetylene, HCCH, or C₂H₂ is 'sp'.
Discussion:
There are three different forms of hybridization -
- sp- The first occurs when two carbon atoms are triple linked.
- sp₂- When two carbon atoms are double-bonded to one another, this is known as sp₂.
- sp₃- When a single bond joins two carbon atoms, this is known as sp₃.
In the case of acetylene(HCCH or C₂H₂):
- The carbon atom requires additional electrons to establish four bonds with hydrogen and other carbon atoms in the synthesis of C₂H₂. One 2s₂ pair is consequently transferred to the vacant 2pz orbital. Each carbon has two sp hybrid orbitals after the 2s orbital in each atom combines with one of the 2p orbitals.
- As a result of the atoms' symmetrical alignment in a single plane, C₂H₂ possesses a linear molecular structure. Due to their lower electronegative nature than Hydrogen atoms, all Carbon atoms are situated near the center of the Lewis structure of C₂H₂.
H-C≡C-H
Therefore, it is concluded from the above discussion that the hybridization type of acetylene is 'sp'.
Learn more about hybridization here:
brainly.com/question/14140731
#SPJ4
Answer:
285g of fluorine
Explanation:
To solve this problem we need to find the mass of Freon in grams. Then, with its molar mass we can find moles of freon and, as 1 mole of Freon, CCl₂F₂, contains 2 moles of fluorine, we can find moles of fluorine and its mass:
<em>Mass Freon:</em>
<em>2.00lbs * (454g / 1lb) = </em>908g of Freon
<em>Moles freon -Molar mass: 120.91g/mol- and moles of fluorine:</em>
908g of Freon * (1mol / 120.91g) =
7.5 moles of freon * (2moles Fluorine / mole Freon): 15 moles of fluorine
<em>Mass fluorine -Atomic mass: 19g/mol-:</em>
15 moles F * (19g / mol) =
<h3>285g of fluorine</h3>
Answer:
Cl2 +2Kl ----->2KCL +I2
Explanation:
_Cl2 + __KI → __KCI + __I2
Cl2 +2Kl ----->2KCL +I2
Answer:
pure substances and mixtures
Explanation:
pure substances are further broken down into elements and compound....... A mixture is composed of different types of atoms or molecules that are not chemically bonded.
Answer:
decrease.
Explanation:
WHY? - As you go across a period, electrons are added to the same energy level. ... The concentration of more protons in the nucleus creates a "higher effective nuclear charge." In other words, there is a stronger force of attraction pulling the electrons closer to the nucleus resulting in a smaller atomic radius.