Depending on the balloon, the surface will cause friction between the two and oxygen molecules will fuse together to create a sticky sensation
The enthalpy change of the reaction is <u>-1347.8 kJ.</u>
<h3>What is the enthalpy change, ΔH, of the reaction?</h3>
The enthalpy change, ΔH, of the reaction is calculated from Hess's law of constant heat summation as follows:
Hess's law states that the enthalpy change of a reaction is the sum of the enthalpies of the intermediate reaction.
Given the reactions below and their enthalpy values;
1. X (s) + 12 O₂ (g)⟶ XO (s) ΔH₁ = −850.5 kJ
2. XCO₃ (s) ⟶ XO (s) + CO₂ (g) ΔH₂ = +497.3 kJ
The enthalpy change, ΔH, of the reaction whose equation is given below, will be:
X (s) + 12 O₂ (g) + CO₂ (g) ⟶ XCO₃ (s)
ΔH = ΔH₁ - ΔH₂
ΔH = − 850.5 kJ - (+497.3 kJ)
ΔH = -1347.8 kJ
Learn more about enthalpy change at: brainly.com/question/14047927
#SPJ1
Answer:
Elliptical galaxies are one of the three types of galaxies. They have a rounded shape of an ellipse, like a stretched-out circle. They lack the swirling arms that are a main feature of spiral galaxies.
The rate of change of the temperature of the Earth's surface is given to,
90°F/mile
To determine the temperature x miles away from the surface, we multiply the depth by the given rate. This will give us the answer of,
T = (90°F/mile)(90 mile)
= 8100°F
Thus, the temperature 90 miles deep in the Earth's surface is equal to 8100°F.