Answer:
1) The charge on the outer shell is +4·Q
2) The charge on the inner shell is +Q
Explanation:
1) The given parameters of the spherical shell are;
The net charge on the spherical shell = 3·Q
The point charge surrounded by the spherical shell = -Q
Let 'x' represent the charge on the outer shell, and let 'y', represent the charge on the inner shell, we have;
The net charge, 3·Q = -q + x
∴ x = 3·Q + Q = 4·Q
The charge on the outer shell, x = 4·Q
2) The net charge in the shell is zero, therefore, the charge on the inner shell, 'y', is given as follows;
-Q + y = 0
∴ y = +Q
The charge on the inner shell, y = +Q
Recall this kinematic equation:
a = 
This equation gives the acceleration of the object assuming it IS constant (the velocity changes at a uniform rate).
a is the acceleration.
Vi is the initial velocity.
Vf is the final velocity.
Δt is the amount of elapsed time.
Given values:
Vi = 0 m/s (the car starts at rest).
Vf = 25 m/s.
Δt = 10 s
Substitute the terms in the equation with the given values and solve for a:
a = 
<h3>a = 2.5 m/s²</h3>
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wpazsebu
When a pendulum is at the midpoint of its oscillation, hanging straight down ...
-- that's the fastest it's going to swing, so its kinetic energy is maximum;
and
-- that's the lowest it's going to get, so its potential energy is minimum.
'c' is your choice.
Answer:
a) x = 8.8 cm * cos (9.52 rad/s * t)
b) x = 8.45 cm
Explanation:
This is a Simple Harmonic Motion, and most Simple Harmonic Motion equations start from the equilibrium point. In this question however, we are starting from the max displacement the equations, and thus, it ought to be different.
From the question, we are given that
A = 8.8 cm = 0.088 m
t = 0.66 s
Now, we need to find the angular speed w, such that
w = 2π/T
w = (2 * 3.142) / 0.66
w = 6.284 / 0.66
w = 9.52 rad/s
The displacement equation of Simple Harmonic Motion is usually given as
x = A*sin(w*t)
But then, the equation starts from the equilibrium point at 0 sec, i.e x = 0 m
When you have to start from the max displacement, then the equation would be
x = A*cos(w*t).
So when t = 0 the cos(0) = 1, and then x = A which is max displacement.
Thus, the equation is
x = 8.8 cm * cos (9.52 rad/s * t)
At t = 1.7 s,
x = 8.8 cos (9.52 * 1.7)
x = 8.8 cos (16.184)
x = -8.45 cm