Answer:
Since 2 pi = 360 deg and pi equals 180 deg, 30 deg = pi / 6.
S = theta * R = pi / 6 * 3 cm = 1.57 cm
Answer:
Explanation:
Total momentum of the system before the collision
.5 x 3 - 1.5 x 1.5 = -0.75 kg m/s towards the left
If v be the velocity of the stuck pucks
momentum after the collision = 2 v
Applying conservation of momentum
2 v = - .75
v = - .375 m /s
Let after the collision v be the velocity of .5 kg puck
total momentum after the collision
.5 v + 1.5 x .231 = .5v +.3465
Applying conservation of momentum law
.5 v +.3465 = - .75
v = - 2.193 m/s
2 ) To verify whether the collision is elastic or not , we verify whether the kinetic energy is conserved or not.
Kinetic energy before the collision
= 2.25 + 1.6875
=3.9375 J
kinetic energy after the collision
= .04 + 1.2 =1.24 J
So kinetic energy is not conserved . Hence collision is not elastic.
3 ) Change in the momentum of .5 kg
1.5 - (-1.0965 )
= 2.5965
Average force applied = change in momentum / time
= 2.5965 / 25 x 10⁻³
= 103.86 N
Answer:
Comets
Explanation:
Comets are planetary celestial bodies consisting of ice and dust, sometimes rocky particles formed in the region of the solar system. Long-period comets propagate towards the Sun by gravitational perturbations caused by passing stars. Some comets usually hyberbolic comets, move through the inner Solar System prior to entering the interstellar region. Short period comet lies beyond the orbit of the Neptune.
The Jovian planets include Jupiter, Saturn, Uranus, and Neptune.
Therefore, leftovers of comets (planetesimal bodies) formed in the region of the solar system that are now occupied by the Jovian planets is due to the dusty particles associated with the comets.
In Newton's third law, the action and reaction forces D.)act on different objects
Explanation:
Newton's third law of motion states that:
<em>"When an object A exerts a force on object B (action force), then action B exerts an equal and opposite force (reaction force) on object A"</em>
It is important to note from the statement above that the action force and the reaction force always act on different objects. Let's take an example: a man pushing a box. We have:
- Action force: the force applied by the man on the box, forward
- Reaction force: the force applied by the box on the man, backward
As we can see from this example, the action force is applied on the box, while the reaction force is applied on the man: this means that the two forces do not act on the same object. This implies that whenever we draw the free-body diagram of the forces acting on an object, the action and reaction forces never appear in the same diagram, since they act on different objects.
Learn more about Newton's third law of motion:
brainly.com/question/11411375
#LearnwithBrainly
The displacement volume in liters is 2.74 liters.
<h3>What is displacement volume?</h3>
Displacement volume is the quantity of solvent that will be displaced by a specified quantity of a solid during dissolution.
It can also be defined as the volume displaced by the piston as it moves between top dead center and bottom dead center in a car engine.
<h3>Displacement volume in liters</h3>
1 liter = 61.02 in³
? = 167 in³
= 167/61.02
= 2.74 liters
Thus, the displacement volume in liters is 2.74 liters.
Learn more about displacement volume here: brainly.com/question/1945909
#SPJ1