1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
3 years ago
6

Which of these activities increases the amount of carbon in the atmosphere? A. animals eating plants B. burning of fossil fuels

C. fossilization D. photosynthesis
Physics
1 answer:
tester [92]3 years ago
8 0

Answer:

B. Burning of fossil fuels

You might be interested in
A cannon fires a 0.652 kg shell with initial
laila [671]
 Mass have no effect for the projectile motion and  u want to know the  height "h"   
first,
        find the vertical and horizontal components of velocity 
 vertical component of velocity = 12 sin 61                  
horizontal component of velocity = 12 cos 61
now for the vertical motion ;               
             S = ut + (1/2) at^2
where
 s = h 
u = initial vertical component of velocity 
t = 0.473 s 
a = gravitational deceleration (-g) = -9.8 m/s^2    
       
         h=[12×sin 610×0.473]+[−9.8×(0.473)2] 

u can simplify this and u will get the answer

h=.5Gt2 

H=1.09m
6 0
3 years ago
Read 2 more answers
To practice Problem-Solving Strategy 23.2 for continuous charge distribution problems. A straight wire of length L has a positiv
Lesechka [4]

Answer:

             E = k Q / [d(d+L)]

Explanation:

As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field

       E = k ∫ dq/ r² r^

"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element  and "r^" is a unit ventor from the load element to the point.

Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant

         λ = Q / L

If we derive from the length we have

        λ = dq/dx       ⇒    dq = L dx

We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge

        dE = k dq / x²2

        dE = k λ dx / x²

Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider

        E = k \int\limits^{d+L}_d {\lambda/x^{2}} \, dx

We take out the constant magnitudes and perform the integral

        E = k λ (-1/x){(-1/x)}^{d+L} _{d}

   

Evaluating

        E = k λ [ 1/d  - 1/ (d+L)]

Using   λ = Q/L

        E = k Q/L [ 1/d  - 1/ (d+L)]

 

let's use a bit of arithmetic to simplify the expression

     [ 1/d  - 1/ (d+L)]   = L /[d(d+L)]

The final result is

     E = k Q / [d(d+L)]

3 0
3 years ago
As a projectile falls, what happens to the components of velocity?
netineya [11]

Answer:

Option (c).

Explanation:

An object when when projected at an angle, will have some horizontal velocity and vertical velocity such that,

v_x=v\cos\theta\ \text{and}\ v_y=v\sin\theta

\theta is the angle of projection

The horizontal component of the projectile remains the same because there is no horizontal motion. Vertical component changes at every point.

As a projectile falls, vertical velocity increases in magnitude, horizontal velocity stays the same .

7 0
3 years ago
When the force acting on the body equal to acceleration?
topjm [15]

Answer:

Acceleration and velocity Newton's second law says that when a constant force acts on a massive body, it causes it to accelerate, i.e., to change its velocity, at a constant rate. In the simplest case, a force applied to an object at rest causes it to accelerate in the direction of the force.

5 0
2 years ago
A spring has a force constant k, and an object of mass m is suspended from it. The spring is cut in half and the same object is
kenny6666 [7]

Answer:

f2/f1 = \sqrt{2}

Explanation:

From frequency of oscillation

f = 1/2pi *\sqrt{k/m}

Initially with the suspended string, the above equation is correct for the relation, hence

f1 = 1/2pi *\sqrt{k/m}

where k is force constant and m is the mass

When the spring is cut into half, by physics, the force constant will be doubled as they are inversely proportional

f2 = 1/2pi *\sqrt{2k/m}

Employing f2/ f1, we have

f2/f1 = \sqrt{2}

3 0
3 years ago
Other questions:
  • Water is a fluid, all fluids
    13·1 answer
  • An OSU linebacker of mass 110.0 kg sacks a UM quarterback of mass 85.0 kg. Just after they collide, they are momentarily stuck t
    7·1 answer
  • A bin has a volume of 1.5m^3, what is its volume in ft^3?
    6·1 answer
  • Compare the Summer Solstice with the Autumn Equinox. Justify your response in two or more complete sentences.
    12·2 answers
  • The small spheres that are moving through the circuit are the electric current. Current is the flow or movement of electrons. De
    10·2 answers
  • Example of the center of the gravity<br>​
    14·1 answer
  • Một electron di chuyển theo đường tròn vuông góc với từ trường đều 1mT. Moment động lượng của electron đối với tâm vòng tròn là
    9·1 answer
  • I am deleting my account so here is some points
    8·2 answers
  • What will happen to the force between 2 charged objects if the mass of one of the charges is doubled and the distance between th
    13·1 answer
  • A glass of root beer with a scoop of ice cream floating on top and a straw sticking out.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!