Answer:
In He2 molecule,
Atomic orbitals available for making Molecular Orbitals are 1s from each Helium. And total number of electrons available are 4.
Molecular Orbitals thus formed are:€1s2€*1s2
It means 2 electrons are in bonding molecular orbitals and 2 are in antibonding molecular orbitals .
Bond Order =Electrons in bonding molecular orbitals - electrons in antibonding molecular orbitals /2
Bond Order =Nb-Na/2
Bond Order =2-2/2=0
Since the bond order is zero so that He2 molecule does not exist.
Explanation:
CH4 + 2 O2 ---> CO2 + 2 H2O Q = 891,6 kJ / mol CH4
1 mol CH4 = 16 g
16 g ---- 891,6 kJ
x g ----- 272 kJ
x = 272 kJ × 16 g / 891,6 kJ = 4,88 g
You must burn 4,88 g of CH4.
:-) ;-)
Answer:
The reason is because Flagstaff is at a higher elevation than Phoenix.
Explanation:
The air is thinner at higher elevations. You can google Flagstaff's elevation compared to Phoenix but the simple answer is that air is thinner at higher elevations and some people used to 'thicker' air find it harder to breath, especially after some strenuous exercise.
Answer:
1.64 moles O₂
Explanation:
Part A:
Remember 1 mole of particles = 6.02 x 10²³ particles
So, the question becomes, how many '6.02 x 10²³'s are there in 9.88 x 10²³ molecules of O₂?
This implies a division of given number of particles by 6.02 x 10²³ particles/mole.
∴moles O₂ = 9.88 x 10²³ molecules O₂ / 6.02 x 10²³ molecules O₂ · mole⁻¹ = 1.64 mole O₂
_______________
Part B needs an equation (usually a combustion of a hydrocarbon).
The distance of the earth to the sun in Mm = 1.5 x 10⁵
<h3>Further explanation</h3>
Given
The distance of the earth to the sun : 1.50 x 10⁸ km
Required
The distance in Mm
Solution
In converting units we must pay attention to the conversion factor.
the conversion factor :
1 kilometer(km) = 10⁻³ megameter(Mm)
So the distance conversion :
1.5 x 10⁸ x 10⁻³ = 1.5 x 10⁵ Mm