In order for a solute to dissolve in a solvent,
the attractive forces between solute particles and the solvent particles must
be stronger than the attractive forces between solute-solute and
solvent-solvent particles. This is important so that the solute will remain in
solution.
Answer:
B. Ca2+ import into the ER because it has the steeper concentration gradient
Explanation:
ΔGt = RT㏑(C₂/C₁)
where ΔGt is the free energy change for transport; R = 8.315 J/mol; T = 298 K; C₂/C₁ is ratio of concentrations inside and outside each organelle.
For Ca²⁺ import
ΔGt = 8.315 J/mol * 298 K * ㏑(10⁻³/10⁻⁷)
ΔGt= 3.42 kJ/mol
For H⁺ import
ΔGt = 8.315 J/mol * 298 K * ㏑ (10⁻⁴/10⁻⁷)
ΔGt = 2.73 kJ/mol
From the above values, ΔGt is greater for Ca²⁺ import because it has a steeper concentration gradient
Answer: 1.15x10²³ molecules C
Explanation: solution attached:
Convert mass of C to moles using its molar mass then multiply to the Avogadro's number.
Energy absorbed by Iron block E (iron) = 460.5 J
Energy absorbed by Copper block E (Copper) = 376.8 J
<u>Explanation:</u>
To find the heat absorbed, we can use the formula as,
q = m c ΔT
Here, Mass = m = 10 g = 0.01 kg
ΔT = change in temperature = 400 - 300 = 100 K = 100 - 273 = -173 °C
c = specific heat capacity
c for iron = 460.5 J/kg K
c for copper = 376.8 J/kg K
Plugin the values in the above equation, we will get,
q (iron) = 0.01 kg × 460.5 J/kg K × 100 K
= 460.5 J
q (copper) = 0.01 kg × 376.8 J/kg K × 100 K
= 376.8 J
I have attached an image of the IR spectrum required to answer this question.
Looking at the IR, we can look for any clear major stretches that stand out. Immediately, looking at the spectrum, we see an intense stretch at around 1700 cm⁻¹. A stretch at this frequency is due to the C=O stretch of a carbonyl. Therefore, we know our answer must contain a carbonyl, so it could still be a ketone, aldehyde, carboxylic, ester, acid chloride or amide. However, if we look in the 3000 range of the spectrum, we see some unique pair of peaks at 2900 and 2700. These two peaks are characteristic of the sp² C-H stretch of the aldehyde.
Therefore, we can already conclude that this spectrum is due to an aldehyde based on the carbonyl stretch and the accompanying sp² C-H stretch.