Answer:+1/2 and -1/2.
Explanation:the presence of an external magnetic field (B0), two spin states exist, +1/2 and -1/2.
The magnetic moment of the lower energy +1/2 state is aligned with the external field, but that of the higher energy -1/2 spin state is opposed to the external field.
Answer:
electrons i think
Explanation:
because electrpns are on the out side of atoms
<span>XY4Z2-->Square planar (Electron domain geometry: Octahedral) sp3d2
XY4Z-->Seesaw (Electron domain geometry: Trigonal bipyramidal) sp3d
XY5Z-->Square pyramidal (Electron domain geometry: Octahedral) sp3d2
XY2Z3-->Linear (Electron domain geometry: Trigonal bipyramidal) sp3d
XY2Z-->Bent (Electron domain geometry: Trigonal planar) sp2
XY3Z-->Trigonal pyramidal (Electron domain geometry: Tetrahedral) sp3
XY2Z2-->Linear (Electron domain geometry: Tetrahedral) sp3
XY3Z2-->T shaped (Electron domain geometry: Trigonal bipryamidal) sp3d
XY2-->Linear (Electron domain geometry: Linear) sp
XY3 Trigonal planar (Electron geometry: Trigonal planar) sp2
XY4-->Tetrahedral (Electron domain geometry: tetrahedral) sp3
XY5-->Trigonal bipyramidal (Electron domain geometry: Trigonal bipyramidal) sp3d
XY6-->Octahedral (Electron domain geometry: Octahedral) sp3d2</span>
Enthalpy change is the difference between energy used and energy gained. The change in enthalpy of the liquid mercury is 0.0231 kJ.
<h3>What is the enthalpy change?</h3>
Enthalpy change is the difference between the energy used to break chemical bonds and the energy gained by the products formed in a chemical reaction.
The enthalpy change is given by,

and,

Given,
Mass of the liquid mercury (m) = 11.0 gm
The specific heat of mercury (c) = 0.14 J per g per degree Celsius
Temperature change = 15 degrees Celsius
Enthalpy change is calculated as:

Therefore, 0.0231 kJ is the change in enthalpy.
Learn more about enthalpy change here:
brainly.com/question/10932978
#SPJ4