Answer:
Option-A is the correct answer
Explanation:
Lithium belong to group 1 metals. Hence, it can loose one electron to form lithium ion i.e. Li⁺¹ or Li⁺
While, Nitrogen is non-metal and hence has the ability to gain the electron lost by lithium metal. Furthermore, Nitrogen can gain maximum 3 electrons to acheive noble gas configuration. Hence, three Li atoms will loose their electrons and Nitrogen will gain those three electrons to form nitride ion i.e. N³⁻.
<span>Take a look at this periodic table.
You start in the left upper corner (1s) then you go to the right untill you can't go further, then you go 1 row down and start at the left again.
So the order will be 1s,2s,2p,3s,3p,4s,3d,4p... etc</span>
What class is this for because it depends
By definition, Bronsted-Lowry acid is a proton donor in the acid-base neutralization reaction. When a weak acid like acetylsalicylic acid is reacted with water, the water here acts as the Bronsted-Lowry base. This is possible because water has properties of amphoterism - can act as an acid or base. In this case, acetylsalicylic acid would have to donate its H+ atom to water, so that it would yield a hydronium ion, H₃O⁺. The complete net ionic reaction is shown in the picture.
So, in the reaction, the products yield are the acetylsalicylate ion and the hydronium ion.