To develop this problem it is necessary to apply the equations concerning Bernoulli's law of conservation of flow.
From Bernoulli it is possible to express the change in pressure as

Where,
Velocity
Density
g = Gravitational acceleration
h = Height
From the given values the change of flow is given as

Therefore between the two states we have to



The flow rate will have changed to 54.77 % of its original value.
Impulse = Change in momentum.
The ball was moving with a momentum of 0.45 * 22 = 9.9
The ball comes to rest in the receivers arm; this means the ball's final velocity = 0. So mv2 = 0.45 * 0
The magnitude of the impact is just the change in momentum. 9.9 - (0.45 * 0) = 9.9
Answer:
0.625m
Explanation:
Now Velocity of a wave ,V = frequency × wavelength
Wavelength =velocity /frequency
=500/800 =0.625m
The higher the pressure, the higher boiling point of water. At lower the pressure, the boiling point of water comes down. So, the lower pressure inreases the boiling resulting more evaporation. As we go higher in altitude, the atmospheric pressure decreases. This results in decreasing the boiling point at higher altitude and increase in boiling of water. In fact, at the sea level ,the the sea water boils at 100 degree C where atmospheric pressre is normal. However , the boiling takes place at a lower temperature at the top of a mountain due to low pressure. In other words the boling is faster at the top of a mountain than that at its foot.
Answer:
other galaxies is red shifted
Question 5 (1 point)
What does a blue shift in light from stars indicate?
Question 5 options:
The stars are moving randomly.
The stars are moving closer.
The stars are moving farther away.
The stars are stationary