Answer:
m
Explanation:
At 10am, the minute hand and hour hand are ' 2 hours apart', since the minute hand is at 12pm and hour hand is at 10am.
Angle between the two hands = 2/12 * 360
= 60°
Arc Length = 
= 
Answer:
The speed of Susan is 2.37 m/s
Explanation:
To visualize better this problem, we need to draw a free body diagram.
the work is defined as:

here we have the work done by Paul and the friction force, so:


Now the change of energy is:

Explanation:
Calcium carbonate is a molecule that contains one atom of calcium, one atom of carbon, and three atoms of oxygen.
Answer:
1058.78 ft/sec
Explanation:
Horizontal Component of Velocity; This is the velocity of a body that act on the horizontal axis. I.e Velocity along x-axis
The horizontal velocity of a body can be calculated as shown below.\
Vh = Vcos∅.......................... Equation 1
Where Vh = horizontal component of the velocity, V = The velocity acting between the horizontal and the vertical axis, ∅ = Angle the velocity make with the horizontal.
Given: V = 1178 ft/sec, ∅ = 26°
Substitute into equation 1
Vh = 1178cos26
Vh = 1178(0.8988)
Vh = 1058.78 ft/sec
Hence the horizontal component of the velocity = 1058.78 ft/sec
Answer:
Yes
Explanation:
Eclipses: Eclipses are also known as game of shadows where one object comes between the star(light source) and another object in a straight line such that the shadow of one object falls on other object. This can occur when the apparent size of the star and the object is almost same.
Talking about the Earth, the geometry is such that the Moon and the Sun are of same apparent size as seen from the Earth. Thus Lunar and Solar eclipse can be seen from the Earth. If we were to go on any other planet the same phenomenon can be seen provided the apparent size of moon and the Sun from that planet is same.
We have seen and recorded many such eclipses on Jupiter. These are from the perspective of Earth. When the moons of Jupiter comes exactly between the Sun and Jupiter the shadow of moon will fall on Jupiter. The places where the shadow falls, one will see a solar eclipse.