That's up to you because you have to go through the book to see their expressions
Answer:
0.06 Kg
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Net Force (F) = 3 N
Mass (m) =?
Next, we shall determine the acceleration of the object. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Acceleration (a) =?
v² = u² + 2as
3² = 0² + (2 × a × 0.09)
9 = 0 + 0.18a
9 = 0.18a
Divide both side by 0.18
a = 9 / 0.18
a = 50 m/s²
Finally, we shall determine the mass of the object. This can be obtained as follow:
Net Force (F) = 3 N
Acceleration (a) = 50 N
Mass (m) =?
F = ma
3 = m × 50
Divide both side by 50
m = 3 / 50
m = 0.06 Kg
Therefore, the mass of the object is 0.06 Kg
Answer:
Friction force always acts tangent to the surface at points of contact. Friction force acts opposite to the direction of motion. There are 2 types of friction: Static friction: If the two surfaces in contact do not move relative to each other, one has static friction.
Explanation:
It is given that,
Initial speed of sprinter, u = 0
Final speed of sprinter, v = 10 m/s
Time taken, t = 1.28 s
a. We need to find the acceleration of sprinter. It can be calculated using first equation of motion as :



b. Final speed of the sprinter, v = 36 km/h
Time, t = 0.000355 h
Acceleration, 

Hence, this is the required solution.