Answer:
W = -0.480 J
Explanation:
given,
q₁ = 4 μC
q₂ = -4.10 μC


b = 0.381
k = 8.99 × 10⁹ Nm²/C²

![W = [-147.436\times (5.88-2.62)\times 10^{-3}]J](https://tex.z-dn.net/?f=W%20%3D%20%5B-147.436%5Ctimes%20%285.88-2.62%29%5Ctimes%2010%5E%7B-3%7D%5DJ)
W = -0.480 J
Work done by the electric force W = -0.480 J
Answer:
vf = 14.2176 m/s
Explanation:
Given
m = 4 Kg
viy = 7.00 ĵ m/s
Fx = 11.0 î N
t = 4.5 s
vf = ?
Using the Impulse - Momentum Theorem, we have
F*Δt = m*Δv ⇒ F*Δt = m*(vf - vi)
⇒ vf = (F*Δt + m*vi) / m
⇒ vf = (F*Δt + m*vi) / m
For <em>x-component</em>
⇒ vfx = (Fx*Δt + m*vix) / m = (11 N*4.5 s + 4 Kg*0 m/s) / (4 Kg)
⇒ vfx = 12.375 î m/s
For <em>y-component</em>
⇒ vfy = (Fy*Δt + m*viy) / m = (0 N*4.5 s + 4 Kg*7 m/s) / (4 Kg)
⇒ vfy = 7 ĵ m/s
Finally:
vf = √(vfx² + vfy²)
⇒ vf = √((12.375 m/s)² + (7 m/s)²)
⇒ vf = 14.2176 m/s
Answer:

Explanation:
<u>Displacement Vector</u>
The displacement, as every vector, has a magnitude r and a direction angle θ measured from the positive x-axis.
If we know the x-y components of the displacement, the magnitude and angle can be calculated by the equations:


The coordinates of the given vector are x=-12 m, y=21 m, thus:


Since the vector lies in the second quadrant, we add 180° to find the correct direction:
