Answer:

Solution:
As per the question:
Point charge, q = 
Test charge, 
Work done by the electric force, 
Now,
We know that the electric potential at a point is given by:

where
r = separation distance between the charges.
Also,
The work done by the electric force i moving a test charge from point A to B in an electric field:




Answer:
13.33 or 13 1/3m/s (meters per second)
Explanation:
In physics, we use the basic units of meters and seconds. So first convert (km) into meters (m) and also hours and minutes into seconds (s). We end up with 120000m and 9000s. Then divide the 120000m by the 9000s and you end up with 13.33 or 13 1/3 m/s.
Answer:
447 K
Explanation:
25 C = 25 + 273 = 298 K
Assuming ideal gas, we can apply the ideal gas law


Since pressure is tripled, then
. Volume is halved, then 

Answer:
15.7 m
Explanation:
m = mass of the sled = 125 kg
v₀ = initial speed of the sled = 8.1 m/s
v = final speed of sled = 0 m/s
F = force applied by the brakes in opposite direction of motion = 261
d = stopping distance for the sled
Using work-change in kinetic energy theorem
- F d = (0.5) m (v² - v₀²)
- (261) d = (0.5) (125) (0² - 8.1²)
d = 15.7 m