Hello there.
<span>In the context of depth perception, which of the following is a monocular cue?
</span><span>(C) Convergence
</span>
Answer:
The lowest possible frequency of sound for which this is possible is 1307.69 Hz
Explanation:
From the question, Abby is standing 5.00m in front of one of the speakers, perpendicular to the line joining the speakers.
First, we will determine his distance from the second speaker using the Pythagorean theorem
l₂ = √(2.00²+5.00²)
l₂ = √4+25
l₂ = √29
l₂ = 5.39 m
Hence, the path difference is
ΔL = l₂ - l₁
ΔL = 5.39 m - 5.00 m
ΔL = 0.39 m
From the formula for destructive interference
ΔL = (n+1/2)λ
where n is any integer and λ is the wavelength
n = 1 in this case, the lowest possible frequency corresponds to the largest wavelength, which corresponds to the smallest value of n.
Then,
0.39 = (1+ 1/2)λ
0.39 = (3/2)λ
0.39 = 1.5λ
∴ λ = 0.39/1.5
λ = 0.26 m
From
v = fλ
f = v/λ
f = 340 / 0.26
f = 1307.69 Hz
Hence, the lowest possible frequency of sound for which this is possible is 1307.69 Hz.
According to Newton's Second Law of Motion :
The Force acting on an Object is equal to Product of Mass of the Object and Acceleration produced due to the Force.
Force acting = Mass of the Object × Acceleration
Given : Force = 50 newton and Mass of the Object = 10 kg
Substituting the respective values in the Formula, we get :
50 N = 10 kg × Acceleration

Acceleration of the Object = 5 m/s²
Vectors are used to represent physical magnitudes that have an associated address. For example, if we want to represent the displacement of an object, it is not enough to describe only the distance as 10 meters, it is also necessary to describe in which direction the displacement occurred, for example, 30 ° towards the northeast.
Therefore the vectors are measured in one or several dimensions that include a magnitude and an address.
The correct option is the last:
"<em>a measurement in more than one dimension that includes a magnitude and a direction</em>"
Answer:
The mass of the rule is 56.41 g
Explanation:
Given;
mass of the object suspended at zero mark, m₁ = 200 g
pivot of the uniform meter rule = 22 cm
Total length of meter rule = 100 cm
0 22cm 100cm
-------------------------Δ------------------------------------
↓ ↓
200g m₂
Apply principle of moment
(200 g)(22 cm - 0) = m₂(100 cm - 22 cm)
(200 g)(22 cm) = m₂(78 cm)
m₂ = (200 g)(22 cm) / (78 cm)
m₂ = 56.41 g
Therefore, the mass of the rule is 56.41 g