Answer:
The acceleration of the collar is 10 m/s²
Explanation:
Given;
mass of the collar, m = 1 kg
applied force on the bar, F = 10 N
The acceleration of the collar can be calculated by applying Newton's second law of motion;
F = ma
where;
F is the applied force
m is mass of the object
a is the acceleration
a = F / m
a = 10 / 1
a = 10 m/s²
Therefore, the acceleration of the collar is 10 m/s²
Answer:
E) is described by all of these
Explanation:
The magnetic force on a charged particle is expressed as:
F = qv * B = qvBsinθ
Where,
q = charge on particle
θ = angle between the magnetic field and the particle velocity.
v = velocity of the particle
B = magnitude of field vector
From here, we could denote that magnetic force, F depends on charge on particle, velocity of particle, magnitude of field vector.
The magnetic force on a charged particle is at right angles to both the velocity of the particle. The magnetic force and magnetic field in a charged particle are perpendicular to each other, the right hand rule is used to determine the direction of force.
The correct option is E.
Answer:
182.28 W
Explanation:
Here ,
m = 7.30 Kg
distance , d= 28.0 m
time , t = 11.0 s
average power supplied = change in potential energy/time
average power supplied = m×g×d/time
average power supplied = 7.30×9.81×28/11
average power supplied = 182.28 W
the average power supplied is 182.28 W