Answer: D. A wave with a shorter wavelength is always faster than one with a longer wavelength
Explanation: "Imagine two sets of waves that have the same speed. <u><em>If one set has a longer wavelength, it will have a lower frequency (more time between waves). If the other set has a shorter wavelength, it will have a higher frequency</em></u> (less time between waves). Light moves even faster AND has shorter wavelengths."
Why it's not C: "The number of complete wavelengths in a given unit of time is called frequency (f). <em><u>As a wavelength increases in size, its frequency and energy (E) decrease</u></em>. From these equations you may realize that as the frequency increases, the wavelength gets shorter. As the frequency decreases, the wavelength gets longer."
Why it's not B: "The frequency does not change as the sound wave moves from one medium to another. Since the speed changes and the frequency does not, the wavelength must change."
Why it's not A: "Do loud sounds travel faster than soft sounds? No. Both travel at the same speed The speed depends on the medium it passes through. Louder sounds are simply sound waves with higher amplitude traveling at the same speed."
Answer:
The combination of elements most likely to comprise the circuit are resistor, inductor and capacitor
Explanation:
The impedance of an LCR circuit shown as
Z = √R² + (X↓l - X↓c)²
Z = √R² + (2π∨L - 1/2π∨c)²
Variation of Z with respect to υ is shown in the figure.
As υ increases, Z decreases and so the current increases.
At υ = υ↓r
Z is minimum, current is maximum. Beyond
υ = υ↓r
Z increases and so current decreases.
so the combination of circuit elements that is most suitable to comprise
the circuit is R, L and C.
To learn more about these circuits
brainly.com/question/13140756
#SPJ4
The correct option is B.
The length of an object, the mass of an object and the rate of time passage for an object can change depending on the situation which the object is subject to. For instance in space, the mass and the velocity of an object usually change. But, the value of the speed of light in the space is the same for all observers regardless of the motion of an object, that is, the speed of light is a constant.<span />
The answer is most likely A