This theory was first proposed by Nicolaus Copernicus. Copernicus was a Polish astronomer. He first published the heliocentric system in his book: De revolutionibus <span>orbium </span>coelestium<span> , "On the revolutions of the heavenly bodies," which appeared in 1543.</span>
Answer:
The electric potential at the midpoint between the two particles is 3.349 X 10⁻³ Volts
Explanation:
Electric potential is given as;
V = E*r
where;
E is the electric field strength, = kq/r²
V = ( kq/r²)*r
V = kq/r
k is coulomb's constant = 8.99 X 10⁹ Nm²/C²
q is the charge of the particles = 1.6 X 10⁻¹⁹ C
r is the distance between the particles = 859 nm
At midpoint, the distance = r/2 = 859nm/2 = 429.5 nm
V = (8.99 X 10⁹ * 1.6 X 10⁻¹⁹)/ (429.5 X 10⁻⁹)
V = 3.349 X 10⁻³ Volts
Therefore, the electric potential at the midpoint between the two particles is 3.349 X 10⁻³ Volts
Answer:
a=F/m
a=12N/3kg (here newton can be written as kgm/s^2 so kg will be cancelled)
a=4m/s^2
Explanation:
Answer:
stars share a gravitational force with the galaxy while nearby galaxies do not share a gravitational field.
Explanation:
stars will not collide because they are bound by a gravitational orbit around the galaxy
How many different types of plant and animal life exist in a given habitat.