Answer:
(a) 0.17 m
(b) 5.003 m
(c) 6.38 × N
(d) 7.37 × N
Explanation:
(a) The minimum value of will occur when q3 = 0 m or at origin and q1, q2 are at 0.17 m so the distance between q3 and q1, q2 is 0.17 m, therefore the <em>minimum value of x= 0.17 m</em>.
(b) The maximum value of x will occur when q3 = 5 m because it is said in the question that 5 is the maximum distance travelled by q3. To find the hypotenuse i.e. the distance between q3 and q1,q2, we use Pythagoras theorem.
<em>Hence, the maximum distance is 5.002 m</em>
(c) For minimum magnitude we use the minimum distance calculated in (a)
Minimum Distance = 0.17 m
For electrostatic force=
×
(d) For maximum magnitude, we use the maximum distance calculated in (b)
Maximum Distance = 5.002 m
Using the formula for electrostatic force again:
F =
F= 7.37× N
The fusion reaction that is easiest to accomplish is the reaction between two hydrogen isotopes: deuterium, extracted from water and tritium, produced during the fusion reaction through contact with lithium. When deuterium and tritium nuclei fuse, they form a helium nucleus, a neutron and a lot of energy.
Answer:
a.
b. must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c. is the time taken to stop after braking
Explanation:
Given:
- speed of leading car,
- speed of lagging car,
- distance between the cars,
- deceleration of the leading car after braking,
a.
Time taken by the car to stop:
where:
, final velocity after braking
time taken
b.
using the eq. of motion for the given condition:
where:
final velocity of the chasing car after braking = 0
acceleration of the chasing car after braking
must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
time taken by the chasing car to stop:
is the time taken to stop after braking
Ciara is winging....etc
The answer is : 0.60 N, toward the center of the circle
A satellite....etc
The Answer is : 7400 m/s
What is the .....etc
The Answer is : 2.60 m/s