1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
3 years ago
11

What is the distance between two and thirty six?

Mathematics
1 answer:
ser-zykov [4K]3 years ago
5 0

Answer:

-34

Step-by-step explanation:

You might be interested in
Which linear function represents the line given by the point-slope equation y + 7 = –y plus 7 equals negative StartFraction 2 Ov
Citrus2011 [14]

Answer:

Negative Start Fraction 2 Over 3 End Fraction x minus 11

f(x)=-\frac{2}{3}x-11

Step-by-step explanation:

we have

y+7=-\frac{2}{3}(x+6)

Convert to slope intercept form

y=mx+b

Solve for y

That means -----> Isolate the variable y

Distribute in the right side

y+7=-\frac{2}{3}x-\frac{2}{3}(6)

y+7=-\frac{2}{3}x-4

subtract 7 both sides

y=-\frac{2}{3}x-4-7

y=-\frac{2}{3}x-11

Convert to function notation

Let

f(x)=y

f(x)=-\frac{2}{3}x-11

therefore

The linear function is

Negative Start Fraction 2 Over 3 End Fraction x minus 11

8 0
3 years ago
Read 2 more answers
0.27 repeating as a fraction in simplest form
Gre4nikov [31]
0.27 repeating as a fraction in simplest form is 3/11
6 0
3 years ago
\lim _{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)
Vinvika [58]

\displaystyle \lim_{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)

Both the numerator and denominator approach 0, so this is a candidate for applying L'Hopital's rule. Doing so gives

\displaystyle \lim_{x\to 0}\left(2\ln(1+3x)+\dfrac{6x}{1+3x}+\cos(x)\tan(3x)+3\sin(x)\sec^2(x)-6x^2}{3\sin(3x)}\right)

This again gives an indeterminate form 0/0, but no need to use L'Hopital's rule again just yet. Split up the limit as

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} + \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} \\\\ + \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} + \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} \\\\ - \lim_{x\to0}\frac{6x^2}{3\sin(3x)}

Now recall two well-known limits:

\displaystyle \lim_{x\to0}\frac{\sin(ax)}{ax}=1\text{ if }a\neq0 \\\\ \lim_{x\to0}\frac{\ln(1+ax)}{ax}=1\text{ if }a\neq0

Compute each remaining limit:

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{\ln(1+3x)}{3x} \times \lim_{x\to0}\frac{3x}{\sin(3x)} = \frac23

\displaystyle \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\frac{1}{1+3x} = \frac23

\displaystyle \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\cos(x)}{\cos(3x)} = \frac13

\displaystyle \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\sin(x)}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\sec^2(x) = \frac13

\displaystyle \lim_{x\to0}\frac{6x^2}{3\sin(3x)} = \frac23 \times \lim_{x\to0}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}x = 0

So, the original limit has a value of

2/3 + 2/3 + 1/3 + 1/3 - 0 = 2

6 0
3 years ago
Solve the system of equation with substitution.
kipiarov [429]

Answer:

fgg I have to go to sleep otp tonight and I really want to talk to you tttttt and I really want to talk to you about it when I get home I will send you a picture of the back of the house and the time is right now but I will be there in a few minutes and I will be there in a few minutes and I will

5 0
4 years ago
How many times greater is the value 0.55 than the value 0.0055?
enyata [817]

Answer:

100

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • WORTH 20 POINTS
    6·2 answers
  • The function h(t) = 150 – 9t represents the height of a ball dropped from 150 feet after t seconds. What will the height of the
    7·1 answer
  • If 2is the zero of the polynomial f(x)=x^2-8x+k then the value of k is​
    6·2 answers
  • Which of the following are solutions to the equation sinx cosx = (sqrt of 3)/4? Check all that apply.
    11·1 answer
  • 90 is 1/10 of _________?
    9·2 answers
  • Math question please help if you get this right I will mark you as a brainliest
    6·1 answer
  • HELP WITH 20 PLEASE!
    12·1 answer
  • Simplify (2.5)(−5)(−4.6). (5 points) −575 −57.5 57.5 575
    14·2 answers
  • Plz help ASAP!!!!<br> I will mark Brainliest!
    8·2 answers
  • A farmer wants to fence an area of 13.5 million square feet in a rectangular field and then divide it in half with a fence paral
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!