The balanced chemical reaction is written as:
<span>Zn + 2AgNO3 = Zn(NO3)2 + 2Ag
To determine the grams of silver metal that is being produced, it is important to first determine which is the limiting reactant and the excess reactant from the given initial amounts. We do as follows:
4.35 g Zn ( 1 mol / 65.38 g ) ( 2 mol AgNO3 / 1 mol Zn ) = 0.1331 mol AgNO3 needed
35.8 g AgNO3 ( 1 mol / 169.87 g ) ( 1 mol Zn / 2 mol AgNO3 ) = 0.1054 mol Zn needed
Therefore, the limiting reactant would be the zinc metal since it would be consumed completely in the reaction. The excess amount of AgNO3 would be:
0.2107 mol AgNO3 - 0.1331 mol AgNO3 = 0.0776 mol AgNO3 left ( 169.87 g / 1 mol ) = 13.19 g AgNO3 left
0.0665 mol Zn ( 2 mol Ag / 1 mol Zn) ( 107.9 g / 1 mol) = 14.3581 g Ag produced</span>
Answer:
The new volume of the balloon when the pressure equalised with the pressure of the atmosphere = 494 L.
The balloon expands by am additional 475 L.
Explanation:
Assuming Helium behaves like an ideal gas and temperature is constant.
According to Boyle's law for ideal gases, at constant temperature,
P₁V₁ = P₂V₂
P₁ = 26 atm
V₁ = 19.0 L
P₂ = 1 atm (the balloon is said to expand till the pressure matches the pressure of the atmpsphere; and the pressure of the atmosphere is 1 atm)
V₂ = ?
P₁V₁ = P₂V₂
(26 × 19) = 1 × V₂
V₂ = 494 L (it is assumed the balloon never bursts)
The new volume of the balloon when the pressure equalised with the pressure of the atmosphere = 494 L.
The balloon expands by am additional 475 L.
Hope this Helps!!!
Potassium and calcium fluoride are both metals
Answer:
Hydrogen gas
Explanation:
During electrolysis of acidified water, H+ ions are reduced to H2 gas at the negative carbon electrode (cathode) and hence hydrogen gas is liberated at cathode.