Answer:
The answer to your question is remplacement double
Explanation:
Data
Lead (II) nitrate = Pb(NO₃)₂
Potassium iodide = KI
Process
1.- Write the balanced chemical reaction
Pb(NO₃)₂ + 2KI ⇒ PbI₂ + 2KNO₃
2.- Conclusion
This is a remplacement double reaction because there are two reactants that interchange cations and the products are a combination of the reactants.
Answer:
b. 2.28 M
Explanation:
The reaction of neutralization of NaOH with H2SO4 is:
2NaOH + H2SO4 → Na2SO4 + 2H2O
<em>Where 2 moles of NaOH react per mole of H2SO4</em>
<em />
To solve the concentration of NaOH we need to find the moles of H2SO4. Using the chemical equation we can find the moles of NaOH that react and with the volume the molar concentration as follows:
<em>Moles H2SO4:</em>
45.7mL = 0.0457L * (0.500mol/L) = 0.02285 moles H2SO4
<em>Moles NaOH:</em>
0.02285 moles H2SO4 * (2moles NaOH / 1 mol H2SO4) = 0.0457moles NaOH
<em>Molarity NaOH:</em>
0.0457moles NaOH / 0.020L =
2.28M
Right option:
<h3>b. 2.28 M</h3>
most metals conduct electricity and are very dull to the look. most metals are toxic if eaten and are hard.
aluminum is a type of metal they is softer than the opther and conducts eletricty like a boss.
nickel on the opther hand is also a metal but does not conduct a lot of electricy.
metals can be bent and others can break,
3Si + 2N2 --> Si3N4 (as given)
n(Si) = m/MM = 38.25/28.085 = 1.3619 mol
n(N2) = 14.33/2*14.007 = 0.5115 mol
Therefore, N2 is limiting and Si is in excess
The molar ratio of 2N2:Si3N4 is 2:1
So, 0.0575 mol of silicon nitride is formed (dividing 0.5115 by 2)
m of silicon nitride= n*mm = 0.0575*140.283 = 8.06627... g
= 8.066g (4 significant figures)
(hopefully it is right, but double check in case i did something wrong) :)
Answer:
C: The actual yield depends on the reaction conditions, but the theoretical yield varies only with reactant amounts
Explanation:
Looking at the options, the correct one is Option C because the actual yield usually depends on the conditions of the reaction, while the theoretical yield usually varies with only the amount of reactant.