Answer:
<em>The type of vegetation a surface does affect the </em><em>water coming from above to sink in or runoff. </em>
Explanation:
This is how the vegetation affects the runoff:-
The leaves and stems present in the vegetation do not let the water fall directly on the soil and makes the process rather slow which makes the water to get to the ground slowly and sink in properly inside the soil rather than running off.
If the vegetation present is dense with there was being hairy then also the water would not run out and will get absorbed by the roots letting the soil intact
Remember that any intersection of lines is a C, and that the number of hydrogens attached are the necessary to complet the 4 bonds.
1) CH3 - CH (OH) - CH (CH3) -CH3
2) CH3 - O - CH(CH3)-CH2 - CH3
I have used the parenthesis to indicate that the radical inside is in other branch, bonded by a single line -
I believe the answer is true, Hope i helped! :)<span />
Answer:
Because it gives them a full valence shell.
Explanation:
Answer:
248 mL
Explanation:
According to the law of conservation of energy, the sum of the heat absorbed by water (Qw) and the heat released by the coffee (Qc) is zero.
Qw + Qc = 0
Qw = -Qc [1]
We can calculate each heat using the following expression.
Q = c × m × ΔT
where,
- ΔT: change in the temperature
163 mL of coffee with a density of 0.997 g/mL have a mass of:
163 mL × 0.997 g/mL = 163 g
From [1]
Qw = -Qc
cw × mw × ΔTw = -cc × mc × ΔTc
mw × ΔTw = -mc × ΔTc
mw × (54.0°C-25.0°C) = -163 g × (54.0°C-97.9°C)
mw × 29.0°C = 163 g × 43.9°C
mw = 247 g
The volume corresponding to 247 g of water is:
247 g × (1 mL/0.997 g) = 248 mL